Validation of GNSS data about the integrated water vapor in Europe using sun photometers

Cover Page

Abstract


In the article the comparison of time series of integrated water vapor (IWV) for 2015-2017 at 8 pair stations of GNSS and solar photometers of AERONET network in Europe is carried out. The distance between pairs of stations didn’t exceed 20 km. It is shown that bias and standard deviations of divergences have the seasonal course. In the winter GNSS-photometer bias was from –0.61 to 0.34 mm. In the summer the GNSS overestimates IWV relative to photometers by values from 0.52 to 2.26 mm. The standard deviation is maximal in summer and is from 1.31 to 1.64 mm, in winter it decreases to 0.49-0.86 mm that is 5-6% of IWV.


About the authors

V. V. Kalinnikov

Kazan (Volga Region) Federal University

Author for correspondence.
Email: Vlad-kalinnikov@mail.ru

Russian Federation, Kremlevskaya St., 18, Kazan, 420008

O. G. Khutorova

Kazan (Volga Region) Federal University

Email: Vlad-kalinnikov@mail.ru

Russian Federation, Kremlevskaya St., 18, Kazan, 420008

References

  1. Mendes V.B. Modeling the neutral-atmospheric propagation delay in radiometric space techniques; Tech. Report № 199. New Brunswick, Canada: UNB, 1999. 353 p.
  2. Bastin S., Champollion C., Block O., Drobinski P., Masson F. Diurnal cycle of water vapor as documented by a Dense GPS Network in a Coastal Area during ESCOMPTE IOP2 // Journal of Applied Meteorology and Climatology. 2007. V. 46. № 2. P. 167–182.
  3. Champollion C., Drobinski P., Haeffelin M., Bock O., Tarniewicz J., Bouin M.N., Vautard R. Water vapour variability induced by urban/rural surface heterogeneities during convective conditions // Q.J.R. Meteorol. Soc. 2009. V. 135. № 642. P. 1266–1276.
  4. Masoumi S., McClusky S., Koulali A. and Tregoning P. A directional model of tropospheric horizontal gradients in Global Positioning System and its application for particular weather scenarios // JGR.-Atmos. 2017. V. 122. P. 4401–4425.
  5. Landskron D., Böhm J. Refined discrete and empirical horizontal gradients in VLBI analysis // J. Geodesy. 2018. V. 92. № 12. P. 1387–1399.
  6. Kalinnikov V.V., Khutorova O.G., Teptin G.M. Influence nonuniformity of the atmospheric water vapor field on the phase measurements of radio signals from global navigation satellite systems // Radiophysics and Quantum Electronics. 2013. V. 56. № 2. P. 96–103.
  7. Kalinnikov V.V., Khutorova O.G. Diurnal variations in integrated water vapor derived from a GPS ground network in the Volga–Ural region of Russia // Ann. Geophys. 2017. V. 35. № 3. P. 453–464.
  8. Glowacki T.J., Penna N.T., Bourke W.P. Validation of GPS-based estimates of integrated water vapour for the Australian region and identification of diurnal variability // Aust. Met. Mag. 2006. V. 55. № 2. P. 131–148.
  9. Heise S., Dick G., Gendt G., Schmidt T., Wickert J. Integrated water vapor from IGS ground-based GPS observations: initial results from a global 5-min data set // Ann. Geophys. 2009. V. 27. № 7. P. 2851–2859.
  10. Haas R., Ning T., Elgered G. Long-term trends in the amount of atmospheric water vapour derived from space geodetic and remote sensing techniques // ESA Proceedings WPP 326. Copenhagen, Denmark, 31 August–2 September 2011.
  11. Van Malderen R., Brenot H., Pottiaux E., Beirle S., Hermans C., De Maziere M., Wagner T., De Backer H., Bruyninx C. A multi-site intercomparison of integrated water vapour observations for climate change analysis // Atmos. Meas. Tech. 2014. V. 7. № 8. P. 2487–2512.
  12. Li X., Zus F., Lu C., Dick G., Ning T., Ge M., Wickert J., Schuh H. Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model // J. Geophys. Res. Atmos. 2015. V. 120. № 14. P. 7189–7204.
  13. Steinke S., Eikenberg S., Löhnert U., Dick G., Klocke D., Di Girolamo P., Crewell S. Assessment of small-scale integrated water vapour variability during HOPE // Atmos. Chem. Phys. 2015. V. 15. № 5. P. 2675–2692.
  14. Kalinnikov V.V., Khutorova O.G. The field of integrated water vapor over northeastern Siberia from the data of global navigation satellite systems // Russian Meteorology and Hydrology. 2016. V. 41. № 10. P. 665–672.
  15. Kouba J. A guide to using international GNSS service (IGS) products, May 2009 // Geodetic Survey Division, Natural Resources Canada. URL: http:// kb.igs.org/hc/en-us/articles/201271873-A-Guide-to-Using-the-IGS-Products
  16. Xu G. GPS. Theory, algorithms and applications. Berlin: Springer, 2007. 340 p.
  17. Schaer S. Mapping and predicting Earth’s ionosphere using the Global Positioning System: dissertation. Bern: AIUB, 1999. 208 p.
  18. Niell A. Global mapping functions for the atmosphere delay at radio wavelengths // JGR. 1996. V. 101. № B2. P. 3227–3246.
  19. Chen G., Herring T.A. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data // JGR. 1997. V. 102. № B9. P. 20489–20502.
  20. Bevis M., Businger S., Chiswell S., Herring T.A., Anthes R.A., Rocken C., Ware R.H. GPS meteorology: mapping zenith wet delays onto precipitable water // J. Appl. Meteor. 1994. V. 33. № 3. P. 379–386.
  21. Saastamioinen J. Contributions to then theory atmospheric refraction. Part II. Refraction corrections in satellite Geodesy // Bull. Geod. 1973. № 107. P. 13–34.
  22. Askne J., Nordius H. Estimation of tropospheric delay for microwaves from surface weather data // Radio Sci. 1987. V. 22. № 3. P. 379–386.
  23. Virolainen Y.A., Timofeyev Y.M., Kostsov V.S., Ionov D.V., Kalinnikov V.V., Makarova M.V., Poberovsky A.V., Zaitsev N.A., Imhasin H.H., Polyakov A.V., Schneider M., Hase F., Barthlott S., Blumenstock T. Quality assessment of integrated water vapour measurements at the St. Petersburg site, Russia: FTIR vs. MW and GPS techniques // Atmos. Meas. Tech. 2017. V. 10. № 11. P. 4521–4536.
  24. Solheim F.S., Vivekanandan J., Ware R.H., Rocken C. Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates // JGR.-Atmos. 1999. V. 104. № D8. P. 9663–9670.
  25. Тимофеев Ю.М., Васильев А.В. Теоретические основы атмосферной оптики. СПб.: Наука, 2003. 477 с.
  26. Smirnov A., Holben B.N., Lyapustin A., Slutsker I., Eck T.F. AERONET processing algorithms refinement // AERONET Workshop. El Arenosillo, Spain. May 10–14, 2004.
  27. Rueger J.M. Refractive indices of light, infrared and radio waves in the atmosphere; UNISURV Report S‑68. Sydney: UNSW, 2002. 104 p.
  28. Sapucci L., Machado L., Monico J., Plana-Fattori A. Intercomparison of Integrated Water Vapor Estimates from Multisensors in the Amazonian Region // Journal of atmospheric and oceanic technology. 2007. V. 24. № 11. P. 1880–1894.
  29. Berezin I.A., Timofeyev Yu.M., Virolainen Ya.A., Frantsuzova I.S., Volkova K.A., Poberovsky A.V., Holben B.N., Smirnov A., Slutsker I. Error analysis of integrated water vapor measured by СIMEL photometer // Izv. Atmos. Ocean. Phys. 2017. V. 53. № 1. P. 58–64.
  30. Li, X., Zus F., Lu C., Dick G., Ning T., Ge M., Wikkert J., Schuh H. Retrieving of atmospheric parameters from multi-GNSS in real time: Validation with water vapor radiometer and numerical weather model // J. Geophys. Res.-Atmos. 2015. V. 120. № 14. P. 7189–7204.

Statistics

Views

Abstract - 161

PDF (Russian) - 92

Cited-By


PlumX

Refbacks

  • There are currently no refbacks.

Copyright (c) 2019 Russian academy of sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies