100 000-летняя ритмичность в ледниковых циклах и колебаниях уровня мирового океана

Обложка

Цитировать

Полный текст

Аннотация

100-тысячелетняя ритмичность в изменениях климата в позднем плейстоцене (в последние 800 тыс. лет) может быть связана с соответствующими колебаниями не только в инсоляции, но и в подводной вулканической активности под воздействием сил гравитации в солнечной системе. Это заключение основано на вейвлетном анализе долговременных данных о колебаниях эксцентриситета орбиты Земли, вариациях различных палеоклиматических характеристик, их известных спектральных оценках и данных о подводной вулканической активности.

Об авторах

В. А. Безверхний

Институт физики атмосферы им. А.М. Обухова РАН

Автор, ответственный за переписку.
Email: vabezv@mail.ru
Россия, 119017, Москва, Ж-17, Пыжевский пер., 3

Список литературы

  1. Berger W.H. Milankovitch theory — hits and misses. Scripps Institution of Oceanography Technical Report // Scripps Inst. Oceanogr. UC. San Diego. Ca. 2012.
  2. Maslin M. Forty years of linking orbits to ice ages // Nature. 2016. V.540. P. 208–210.
  3. Мохов И.И., Безверхний В.А., Карпенко А.А. Диагностика взаимных изменений содержания парниковых газов в атмосфере и температурного режима по палеореконструкциям для антарктической станции Восток // Изв. РAH. Физикa aтмocфepы и oкeaнa. 2005. Т. 41. № 5. C. 579–592.
  4. Мохов И.И., Безверхний В.А., Карпенко А.А. Взаимные изменения температурного режима и содержания парниковых газов в атмосфере по палеореконструкциям для последних 800 тысяч лет // Экстремальные природные явления и катастрофы. Т. 1. Оценка и пути снижения негативных последствий экстремальных природных явлений. Отв. ред. А.О. Глико. М.: ИФЗ РАН. 2010. С. 312–319.
  5. Berger A., Loutre M.F. Insolation values for the climate of the last 10 million years // Quat. Sci. Rev. 1991. V. 10. P. 297–317.
  6. Ruddiman W.F. Orbital changes and climate // Quat. Sci. Rev. 2006. V. 25. P. 3092–3112.
  7. Shackleton N.J. The 100,000-Year Ice-Age Cycle Identified and Found to Lag Temperature, Carbon Dioxide, and Orbital Eccentricity // Science 2000. V. 289 P. 1897–1902. doi: 10.1126/science.289.5486.1897
  8. Ganopolski A., Calov R. The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles // Clim. Past. 2011. V. 7. P. 1415–1425.
  9. Berger A., Melice J.L., Loutre M.F. On the origin of the 100-kyr cycles in the astronomical forcing // Paleoceanography. 2005. V. 20. PA4019. P. 1–17. doi: 10.1029/2005PA001173
  10. Maslin M.A., Brierley C.M. The role of orbital forcing in the Early Middle Pleistocene Transition // Quat. Intern. 2015. V. 389. P. 47–55.
  11. Tziperman E., Raymo M.E., Huybers P.J., Wunsch C. Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing // Paleoceanography. 2006. V. 21. PA4206. P. 111.
  12. Siddall M., Honisch B., Waelbroeck C. Huybers P. Changes in deep Pacific temperature during the mid-Pleistocene transition and Quaternary // Quat. Sci. Rev. 2010. V. 29. P. 170–181.
  13. Lisiecki L.E. Links between eccentricity forcing and the 100,000-year glacial cycle // Nature Geosci. 2010. V. 3. P. 349–352.
  14. Lisiecki L.E., Raymo M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records // Paleoceanography. 2005. V. 20. PA1003. P. 1–17.
  15. De Boer B., Lourens L.J., van de Wal R.S.W. Persistent 400,000-year variability of Antarctic ice volume and the carbon-cycle is revealed throughout the Plio-Pleistocene // Nat. Commun. 2014. V. 5. P. 2999.
  16. Morlet J., Arensz G., Fourgeau E., Giard D. Wave propagation and sampling theory-Part II: Sampling theory and complex waves // Geophysics. 1982. V. 41. № 2. P. 222–236.
  17. Постников Е.Б. Вейвлет-преобразование с вейвлетом Морле: методы расчета, основанные на решении диффузионных дифференциальных уравнений // Комп. исслед. модел. 2009. Т. 1. № 1. С. 5–12.
  18. Cappellini V., Constantinides A.G.D., Emiliani P. Digital filters and their applications // London: Academic Press. 1978. P. 393.
  19. Безверхний В.А. Проявление характерных периодов колебаний орбитальных параметров Земли в палеоклиматических данных // Докл. РАН. 2013. Т. 451. № 3. С. 327–331.
  20. Huybers P., Langmuir Ch.H. Delayed CO2 emissions from mid-ocean ridge volcanism as a possible cause of late-Pleistocene glacial cycles // Earth Planet. Sci. Let. 2017. V. 457. P. 238–249.
  21. Ganopolski A., Brovkin V. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity // Clim. Past. 2017. V. 13. P. 1695–1716.
  22. Wang Z.J., Lin X. Astronomy and Climate-Earth System: Can Magma Motion under Sun-Moon Gravitation Contribute to Paleoclimatic Variations and Earth’s Heat? // Advan. Astron. 2015. V. 2015. Art. ID536829. P. 1–10.
  23. Kutterolf S., Jegen M., Mitrovica J.X., Kwasnitschka T., Freundt A., Huybers P.J. A detection of Milankovitch frequencies in global volcanic activity // Geology. 2013. V. 41. № 2. P. 227–230.
  24. Bezverkhnii V.A. Earth’s obliquity oscillations can influence climate change by driving global volcanic activity // Geosci. Res. 2017. V. 2. № 1. P. 22–26.
  25. Tolstoy M. Mid-ocean ridge eruptions as a climate valve // Geophys. Res. Let. 2015. V. 42. № 5. P. 1346–1351.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2019

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах