Acetylene trimerization on the silicon carbide surface in the envelopes of AGB stars: an astrochemical estimation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

This work is devoted to estimating of the contribution of the trimerization reaction of acetylene molecules on the surface of silicon carbide (SiC) particles with the formation of benzene molecules into the benzene abundance in the envelopes of asymptotic giant branch (AGB) stars. The reaction was included into an astrochemical model, using which modeling was carried out under conditions corresponding to the envelope of the AGB star IRC+10216. Based on the modeling results, it is shown that the trimerization reaction of acetylene on the SiC surface can effectively occur under the conditions of the envelopes of AGB stars and have a significant effect on the benzene abundance, and, as a consequence, other aromatic molecules. Accounting for acetylene trimerization can increase the benzene abundance in the gas by an order of magnitude, and at the surface the benzene abundance can be up to four orders of magnitude higher compared to estimates in the gas predicted by a model with only gas-phase reactions. The rate of benzene formation on the SiC surface significantly exceeds the rate of benzene formation in the gas during the early phases of the stellar pulsation. The efficiency of benzene formation in the trimerization reaction depends on currently unknown kinetic parameters of the reaction, in particular, on the desorption energy of the resulting benzene molecule. Determination of reaction parameters will help to perform more accurate quantitative modeling in the future.

Толық мәтін

Рұқсат жабық

Авторлар туралы

M. Murga

Institute of Astronomy of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: murga@inasan.ru
Ресей, Moscow

Әдебиет тізімі

  1. A.G.G.M. Tielens, Ann. Rev. Astron. Astrophys. 46, 289 (2008).
  2. H. Dhanoa and J.M.C. Rawlings, Monthly Not. Roy. Astron. Soc. 440(2), 1786 (2014).
  3. M. Frenklach and E.D. Feigelson, Astrophys. J. 341, 372 (1989).
  4. I. Cherchneff, Astron. and Astrophys. 545, id. A12 (2012).
  5. E.R. Micelotta, A.P. Jones, and A.G.G.M. Tielens, Astron. and Astrophys. 510, id. A36 (2010).
  6. E.R. Micelotta, A.P. Jones, and A.G.G.M. Tielens, Astron. and Astrophys. 510, id. A37 (2010).
  7. D.S.N. Parker, F. Zhang, Y.S. Kim, R.I. Kaiser, A. Landera, V.V. Kislov, A.M. Mebel, and A.G.G.M. Tielens, Proc. Nat. Acad. Sci. 109(1), 53 (2012).
  8. H. Hirashita, Monthly Not. Roy. Astron. Soc. 407(1), L49 (2010).
  9. A.P. Jones, M. Köhler, N. Ysard, M. Bocchio, and L. Verstraete, Astron. and Astrophys. 602, id. A46 (2017).
  10. G.C. Sloan, K.E. Kraemer, M. Matsuura, P.R. Wood, S. D. Price, and M.P. Egan, Astrophys. J. 645(2), 1118 (2006).
  11. M.A.T. Groenewegen, P.R. Wood, G.C. Sloan, J.A. D.L. Blommaert, et al., Monthly Not. Roy. Astron. Soc. 376(1), 313 (2007).
  12. A.B. Men'shchikov, Y. Balega, T. Blöcker, R. Osterbart, and G. Weigelt, Astron. and Astrophys. 368, 497 (2001).
  13. E. Lagadec, A.A. Zijlstra, G.C. Sloan, M. Matsuura, et al., Monthly Not. Roy. Astron. Soc. 376(3), 1270 (2007).
  14. K.M. Hynes, T.K. Croat, and T.J. Bernatowicz, in 38th Annual Lunar and Planetary Science XXXVIII Conference, held March 12 16, 2007 in League City, Texas; LPI Contribution No. 1338, p. 1693 (2007).
  15. T. Bernatowicz, G. Fraundorf, T. Ming, E. Anders, B. Wopenka, E. Zinner, and P. Fraundorf, Nature 330(6150), 728 (1987).
  16. G.C. Sloan, E. Lagadec, A.A. Zijlstra, K.E. Kraemer, et al., Astrophys. J. 791(1), id. 28 (2014).
  17. J.M. Leisenring, F. Kemper, and G.C. Sloan, Astrophys. J. 681(2), 1557 (2008).
  18. B.T. Draine, D.A. Dale, G. Bendo, K.D. Gordon, et al., Astrophys. J. 663(2), 866 (2007).
  19. M.S. Khramtsova, D.S. Wiebe, P.A. Boley, and Y.N. Pavlyuchenkov, Monthly Not. Roy. Astron. Soc. 431(2), 2006 (2013).
  20. K.M. Sandstrom, A.D. Bolatto, C. Bot, B.T. Draine, et al., Astrophys. J. 744(1), id. 20 (2012).
  21. D.A. Garca-Hernández, IAU General Assembly, Meeting 29, id. 2254847 (2015).
  22. M. Otsuka, F. Kemper, J. Cami, E. Peeters, and J. Bernard-Salas, Monthly Not. Roy. Astron. Soc. 437(3), 2577 (2014).
  23. P. Merino, M. Švec, J.I. Martinez, P. Jelinek, et al., Nature Comm. 5, id. 3054 (2014).
  24. J.J. Bernal, P. Haenecour, J. Howe, T.J. Zega, S. Amari, and L.M. Ziurys, Astrophys. J. Letters 883(2), id. L43 (2019).
  25. T.Q. Zhao, Q. Li, B.S. Liu, R.K.E. Gover, P.J. Sarre, and A.S.C. Cheung, Phys. Chemistry Chemical Physics 18(5), 3489 (2016).
  26. C. Saggese, N.E. Sánchez, A. Frassoldati, A. Cuoci, T. Faravelli, M.U. Alzueta, and E. Ranzi, Energy and fuels 28(2), 1489 (2014).
  27. E.O. Pentsak, M.S. Murga, and V.P. Ananikov, ACS Earth and Space Chemistry 8(5), 798 (2024).
  28. E.G. Gordeev, E.O. Pentsak, and V.P. Ananikov, J. Amer. Chemical Soc. 142(8), 3784 (2020).
  29. N.F. Kleimeier, Y. Liu, A.M. Turner, L.A. Young, et al., Phys. Chemistry Chemical Physics 24(3), 1424 (2022).
  30. K. Willacy and I. Cherchneff, Astron. and Astrophys. 330, 676 (1998).
  31. G.H. Bowen, Astrophys. J. 329, 299 (1988).
  32. I. Cherchneff, IAU Symposium 178, 469 (1997).
  33. I. Cherchneff, Astron. and Astrophys. 526, id. L11 (2011).
  34. M. Asplund, N. Grevesse, A.J. Sauval, and P. Scott, Ann. Rev. Astron. Astrophys. 47(1), 481 (2009).
  35. A.K. Speck, A.B. Corman, K. Wakeman, C.H. Wheeler, and G. Thompson, Astrophys. J. 691(2), 1202 (2009).
  36. V. Gómez-Llanos, C. Morisset, R. Szczerba, D.A. Garca-Hernández, and P. Garca-Lario, Astron. and Astrophys. 617, id. A85 (2018).
  37. H.P. Gail and E. Sedlmayr, Physics and Chemistry of Circumstellar Dust Shells (Cambridge, UK.: Cambridge Univ. Press, 2013).
  38. A.S. Ferrarotti and H.P. Gail, Astron. and Astrophys. 382, 256 (2002).
  39. C.M. Sharp and W.F. Huebner, Astrophys. J. Suppl. 72, 417 (1990).
  40. A. Laor and B.T. Draine, Astrophys. J. 402, 441 (1993).
  41. T.I. Hasegawa, E. Herbst, and C.M. Leung, Astrophys. J. Suppl. 82, 167 (1992).
  42. A.I. Vasyunin and E. Herbst, Astrophys. J. 762(2), id. 86 (2013).
  43. J.P. Fonfra, J. Cernicharo, M.J. Richter, and J.H. Lacy, Astrophys. J. 673(1), 445 (2008).
  44. P.A. Taylor, R.M. Wallace, C.C. Cheng, W.H. Weinberg, M.J. Dresser, W.J. Choyke, and J.T. Jr. Yates, J. Amer. Chemical Soc. 114(17), 6754 (1992).
  45. C.S. Carmer, B. Weiner, and M. Frenklach, J. Chemical Physics 99(2), 1356 (1993).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Schematic representation of the process of sequential accretion of C2H2 molecules onto the SiC surface and trimerization with the formation of benzene.

Жүктеу (63KB)
3. Fig. 2. The abundance of molecules depending on the distance from the star (left) and at a distance of 2.2 R* depending on the phase of adiabatic cooling (right). The solid lines show the results of calculations of the abundance of molecules in the gas using a model without surface reactions, the dashed and dotted lines show the models with surface reactions, in which the energy of benzene desorption from the surface Ed was taken to be 4.5 and 1 eV, respectively. The dash-dotted line (left) shows the abundance of benzene on the surface of SiC particles for the model with Ed = 4.5 eV.

Жүктеу (187KB)
4. Fig. 3. Rates of benzene formation in gas depending on the phase of adiabatic cooling at a distance of 2.2 R*. The rates of formation due to gas reactions are shown in black, and those due to trimerization on the surface of dust particles are shown in blue. The style of the lines corresponds to the same models as in Fig. 2.

Жүктеу (118KB)

© The Russian Academy of Sciences, 2024