Biosensor systems: determination of optimal time parameters of olfactory stimulation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Biosensor systems are improving swiftly and become increasingly important in areas such as defense and security, medical field, especially, cancer screening and detection, environmental quality monitoring, and so forth. The present work describes the development of a biosensor system, based on the use of macrosmatic animal olfactory bulb (OB) visualized by optical imaging of odor-evoked glomerular activity patterns. The difficulties that automatic detection of odor-evoked patterns presents under multiple stimulation are associated with adaptation processes, which are manifested as a reversible change in the sensitivity of the neural structures of the olfactory system. The optimal stimulus duration and interstimulus intervals for stabilizing the glomerular response and getting images of glomerular activity patterns under the multiple odor stimulation with constant accuracy have been experimentally found. The results obtained show the availability of other resource in addition to the existing tools used for the development of biosensor systems.

Авторлар туралы

A. Matukhno

Southern Federal University

Rostov-on-Don, Russia

M. Petrushan

Southern Federal University

Rostov-on-Don, Russia

L. Lysenko

Southern Federal University

Email: lalv@sfedu.ru
Rostov-on-Don, Russia

V. Kiroy

Southern Federal University

Rostov-on-Don, Russia

Әдебиет тізімі

  1. В. Н. Кирой, П. О. Косенко, И. Е. Шепелев и др., Журн. аналит. химии, 78 (8), 1 (2023).
  2. V. Akimov, E. Alfinito, J. Bausells, et al., Analog.Integr. Circ. Sig. Process., 57, 197 (2008).
  3. H. J. Ko and T. H. Park, J. Biol. Eng.,10 (17), 1 (2016).
  4. Y. Lu, Y. Yao, S. Li, et al., Sensor Rev., 37 (4), 396 (2017).
  5. О. Д. Новикова, Г. А. Набережных и А. А. Сергеев, Биофизика, 66 (4), 668 (2021).
  6. K. Gao, S. Li, L. Zhuang, et al., Biosens. Bioelectron., 102, 150 (2018).
  7. I. V. Shcherban, P. O. Kosenko, O. G. Shcherban, et al., Inform. Sci. Control Systems, 5, 62 (2020).
  8. K. Mori, H. Nagao, and Y. Yoshihara, Science, 286 (5440), 711 (1999).
  9. T. C. Bozza and J. S. Kauer, J. Neurosci., 18 (12), 4560 (1998).
  10. B. Malnic, J. Hirono, T. Sato, et al., Cell, 9 (5), 713 (1999).
  11. T. Bozza, P. Feinstein, C. Zheng, et al., J. Neurosci., 22 (8), 3033 (2002).
  12. P. Mombaerts, Annu. Rev. Neurosci., 22, 487 (1999).
  13. X. Zhang and S. Firestein, Nat. Neurosci., 5 (2), 124 (2002).
  14. R. Vassar, S. K. Chao, R. Sitcheran, et al., Cell, 79 (6), 981 (1994).
  15. P. Mombaerts, F. Wang, C. Dulac, et al., Cell, 87 (4), 675 (1996).
  16. B. Zapiec and P. Mombaerts, Cell Rep., 30 (12), 4220 (2020).
  17. T. Imai, Semin. Cell Dev. Biol., 35, 180 (2014).
  18. K. Mori and Y. Yoshihara, Prog. Neurobiol., 45, 585 (1995).
  19. Y. Oka, S. Katada, M. Omura, et al., Neuron, 52, 857 (2006).
  20. B. D.Rubin and L.C. Katz, Neuron, 23 (3), 499 (1999).
  21. E. R. Soucy, D. F. Albeanu, A. L. Fantana, et al., Nat. Neurosci., 12 (2), 210(2009).
  22. B. Zapiec and P. Mombaerts, Proc. Natl. Acad. Sci. USA, 112 (43), E5873 (2015).
  23. S. DeMaria and J. Ngai, J. Cell Biol., 191 (3), 443 (2015).
  24. N. Uchida, Y. K. Takahashi, M. Tanifuji, et al., Nat. Neurosci., 3 (10), 1035 (2000).
  25. L. Belluscio and L. C. Katz, J. Neurosci., 21 (6), 2113 (2001).
  26. Y. K. Takahashi, M. Kurosaki, S. Hirono, et al. J. Neurophysiol., 92 (4), 2413 (2004).
  27. K. M. Igarashi and K. Mori, J. Neurophysiol., 93 (2), 1007 (2005).
  28. K. Mori, Y. K. Takahashi, K. M. Igarashi, et al., Physiol. Rev., 86 (2), 409 (2006).
  29. B. A. Johnson and M. Leon, J.Comp. Neurol., 503 (1), 1 (2007).
  30. K. Touhara, in Handbook of Neurochemistry and Molecular Neurobiology, Ed. by A. Lajtha and K. Mikoshiba (Springer, Boston, 2009), pp. 139-160.
  31. M. Wachowiak and L. B. Cohen, Neuron, 32 (4), 723 (2001).
  32. M. Meister and T. Bonhoeffer, J. Neurosci., 21 (4), 1351 (2001).
  33. M. Wachowiak, L.B. Cohen, J. Neurophysiol., 89 (3), 1623 (2003).
  34. M. L. Fletcher, A. V. Masurkar, J. Xing, et al., J. Neurophysiol., 102 (2), 817 (2009).
  35. H. Spors, M. Wachowiak, L. B. Cohen, et al., J. Neurosci., 26 (4), 1247 (2006).
  36. R. M. Carey, J. V. Verhagen, D. W. Wesson, et al., J. Neurophysiol., 101 (2), 1073 (2009).
  37. B. Bathellier, O. Gschwend, and A. Carleton, in The Neurobiology of Olfaction, Ed. by A. Menini (CRC Press/Taylor & Francis, Boca Raton, 2010), pp. 329340.
  38. T. Kurahashi and T. Shibuya, Brain Res., 515 (1-2), 261 (1990).
  39. F. Zufall and T. Leinders-Zufall, Chem. Senses, 25 (4), 473 (2000).
  40. D. Chaudhary, L. Manella, A. Arellanos, et al., Behav. Neurosci., 124 (4), 490 (2010).
  41. D. A. Wilson, J. Neurophysiol., 80 (2), 998 (1998).
  42. D. A. Wilson, J. Neurophysiol., 84 (6), 3036 (2000).
  43. D. A. Wilson, J. Neurophysiol., 90 (1), 65 (2003).
  44. A. R. Best and D. A. Wilson, J. Neurosci., 24 (3), 652 (2004).
  45. A. M. McNamara, P. D. Magidson, C. Linster, et al., Learn Mem., 15 (3), 117 (2008).
  46. J. R. Schafer, I. Kida, F. Xu, et al. Neuroimage, 31 (3), 1238 (2006).
  47. J. V. Verhagen, D. W. Wesson, T. I.Netoff, et al., Nat. Neurosci., 10 (5), 631 (2007).
  48. B. G. Sanganahalli, M. R. Rebello, P. Herman, et al., Neuroimage, 126, 208 (2016).
  49. R. A. Arefev, V. N. Kiroy, N. V. Bulat et al., J. Neurosci. Methods, 361, 1 (2021).
  50. E. Meisami. Chem. Senses, 15 (4), 407 (1990).
  51. F. Pain, B. L. Heureux, and H. Gurden, Cell. Mol. Life Sci., 68, 2689 (2011).
  52. R. Iwata, H. Kiyonari, and T. Imai, Neuron, 96 (5), 1139 (2017).
  53. L. Zhuang, T. Guo, D. Cao, et al., Biosens. Bioelectron., 67, 694 (2015).
  54. K. Gao, S. Li, L. Zhuang, et al., Biosens. Bioelectron., 102, 150 (2018).
  55. E. Shor, P. Herrero-Vidal, A. Dewan, et al., Biosens. Bioelectron., 195, 113664 (2022).
  56. P. Zhu, S. Liu, Y. Tian, et al., ACS Chem. Neurosci., 13 (12), 1727 (2022).
  57. R. Biran, D. C. Martin, and P. A. Tresco. J. Biomed. Mater. Res. A, 82(1),169 (2007).
  58. J. Thelin, H. Jorntell, E. Psouni, et al., PLoS One, 6 (1), e16267 (2011).
  59. L. S. Kumosa. Adv. Sci. (Weinh), 10 (6), e2205095 (2023).
  60. G. J. Broussard and L. Petreanu, J. Neurosci. Methods, 360, 109251 (2021).
  61. M. Wachowiak, W. Denk, and R. W. Friedrich. Proc. Natl. Acad. Sci. USA, 101 (24), 9097 (2004).
  62. M. Robbins, C. N. Christensen, C. F. Kaminski, et al., F1000Res., 10, 258 (2021).
  63. J. Strotmann, S. Conzelmann, A. Beck, et al., J. Neurosci., 20 (18), 6927 (2000).
  64. A. Nakashima, N. Ihara, M. Shigeta, et al., Science, 365 (46), 1 (2019).
  65. K. Zhu, S. Burton, M. Nagai, et al., Nature Commun., 13(1), 5137 (2022).
  66. M. C. Cheung, W. Jang, J. E. Schwob, et al., Front. Neural. Circuits, 7, 207 (2014).
  67. C. Guo, G. J. Blair, M. Sehgal, et al. Sci. Adv., 9(16), eadg391 (2023).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023