The Ak-Sug Porphyry Copper–Gold–Molybdenum Deposit, East Sayan: Noble Metal Mineralization, PT-Parameters, and Composition of Ore-Bearing Fluid

封面

如何引用文章

全文:

详细

Ore mineralization of the Ak-Sug Porphyry Copper–Gold–Molybdenum deposit formed during three stages: 1) porphyry-copper mineralization with simple sulfides in quartz–sericite and quartz–sericite–chlorite metasomatites, 2) subepithermal Au–Bi–Te–Pd-quartz mineralization in quartz–sericite metasomatites, and 3) intermediate-sulfidation Au–Ag mineral assemblages with selenides, tellurides, and Sb and As sulfosalts in argillisites. Fluid inclusion studies (microthermometry, Raman spectroscopy) of quartz and mineral thermometry (an assemblage of Au and Ag tellurides) showed that porphyry copper and subepithermal mineralization precipitated from hydrocarbon–aqueous–chloride (Na–K ± Fe) fluid with salinity of 20.1–32.8 wt % NaCl eq. at 435–375°C and hydrocarbon–aqueous–chloride (Na–K ± Fe ± Ca ± Mg) fluid with salinity of 7.5–15.0 wt % NaCl eq. at 415–325°C, respectively. The epithermal mineral assemblages precipitated at ∼0.55 kbar from hydrocarbon–aqueous–chloride (Na–K ± Fe ± Ca ± Mg) fluid with salinity of 1.4–12.6 wt % NaCl eq. at 370–200°C. The latest low-temperature (240–190°С) and diluted (3.5–4.9 wt %) fluids are characterized by variations in Na and K chlorides; Fe2+, Fe3+, Ca, and Mg carbonates; and Na, K, and Mg sulfates. The S isotopic composition of the fluid of different mineral assemblages varies from –2.7 to +0.3‰ and suggest that they are derivatives of a single porphyry system. The δ18О values of the fluid of porphyry copper (7.4‰) and subepithermal (7.0‰) stages indicate its magmatic genesis, whereas those of the epithermal stage (from +1.2 to +7.2‰) are evident of mixing of magmatic fluid and meteoric waters (from +0.4 to +5.7‰). Our isotopic data, combined with mineralogical–geochemical peculiarities and formation conditions of ores, provide tracing the principles of the evolution of mineral assemblages, temperatures, composition, and fluid salinity at the Ak-Sug deposit upon the transition from porphyry copper to epithermal stage.

作者简介

R. Kuzhuget

Tuvinian Institute for Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences

Email: rkuzhuget@mail.ru
667007, Kyzyl, Russia

N. Ankusheva

Tuvinian Institute for Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences; South Urals Federal Research Center of Mineralogy and Geoecology, Uralian Branch, Russian Academy of Sciences

Email: rkuzhuget@mail.ru
667007, Kyzyl, Russia; 456317, Miass, Chelyabinsk oblast, Russia

A. Khertek

Tuvinian Institute for Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences

Email: rkuzhuget@mail.ru
667007, Kyzyl, Russia

A. Mongush

Tuvinian Institute for Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences

Email: rkuzhuget@mail.ru
667007, Kyzyl, Russia

Yu. Butanaeva

Tuvinian Institute for Exploration of Natural Resources, Siberian Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rkuzhuget@mail.ru
667007, Kyzyl, Russia

参考

  1. Бакшеев И.А., Николаев Ю.Н., Прокофьев В.Ю., Нагорная Е.В., Читалин А.Ф., Сидорина Ю.Н., Марущенко Л.И., Калько И.А. Золото-молибден-меднопорфирово-эпитермальная система Баимской рудной зоны, Западная Чукотка // Металлогения древних и современных океанов-2014: Мат. XX Науч. мол. школы. Миасс: ИМин УрО РАН, 2014. С. 108–112.
  2. Берзина А.Н., Сотников В.И., Экономоу-Элиопоулос М., Элиопоулос Д.Г. Первая находка меренскита (Pd, Pt)Te2 в рудах Cu-Mo-порфировых месторождений России // Геология и геофизика. 2007. Т. 48. № 8. С. 848–851.
  3. Борисенко А.С. Анализ солевого состава растворов газово-жидких включений в минералах методом криометрии // Использование методов термобарогеохимии при поисках и изучении рудных месторождений / Ред. Н.П. Лаверов. М.: Недра. 1982. С. 37–46.
  4. Бортников Н.С., Крамер Х., Генкин А.Д. Парагенезисы теллуридов золота и серебра в золоторудном месторождении Флоренсия (Республика Куба) // Геология руд. месторождений. 1988. № 2. С. 49–61.
  5. Буханова Д.С. Минералого-геохимические особенности Малмыжского золотомедно-порфирового месторождения, Хабаровский край: Автореф. Дис … к.г.-м.н. Владивосток, 2019. 26 с.
  6. Вернадский В.И. Опыт описательной минералогии. Петроград. Изд-во Имп. АН. 1914. 780 с.
  7. Викентьев И.В., Мансуров Р.Х., Иванова Ю.Н., Тюкова Е.Э., Соболев И.Д., Абрамова В.Д., Выхристенко Р.И., Трофимов А.П., Хубанов В.Б., Грознова Е.О., Двуреченская С.С., Кряжев С.Г. Золото-порфировое Петропавловское месторождение (Полярный Урал): геологическая позиция, минералогия и условия образования // Геология руд. месторождений. 2017. Т. 59. № 6. С. 501–541.
  8. Викентьев И.В., Шатов В.В., Смирнов Д.И., Волчков А.Г. Медно-золотопорфировое месторождение Юбилейное (Западный Казахстан): геологическая позиция и условия образования // Геология руд. месторождений. 2023. Т. 65. № 7. С. 596–633.
  9. Волков А.В., Егоров В.Н., Колова Е.Е., Прокофьев В.Ю., Савва Н.Е., Сидоров А.А., Шаповалов В.С. Закономерности размещения и условия формирования Au-содержащих Cu-Mo-порфировых месторождений северо-востока России // Геология руд. месторождений. 2006. Т. 48. № 6. С. 512–539.
  10. Грабежев А.И. Юбилейное Cu–Au порфировое месторождение (Южный Урал, Россия): SHRIMP-II U-Pb возраст циркона и изотопно-геохимические особенности рудоносных гранитоидов // Докл. РАН. 2014. Т. 454. № 3. С. 315–318.
  11. Грабежев А.И., Русинова О.В., Жухлистов А.П., Мурзин В.В. Вертикальная рудно-метасоматическая зональность Томинского медно-порфирового рудного узла (Южный Урал, Россия) // Геология руд. месторождений. 1995. № 6. С. 500–510.
  12. Грабежев А.И., Ронкин Ю.Л., Пучков В.Н., Шардакова Г.Ю., Азовскова О.Б., Гердес А. Силурийский U-Pb возраст (LA-ICP-MS) циркона из гранитоидов Зеленодольского медно-порфирового месторождения, Южный Урал // Докл. РАН. 2016. Т. 466. № 3. С. 335–339.
  13. Грабежев А.И., Шардакова Г.Ю., Ронкин Ю.Л., Азовскова О.Б. Систематика U-Pb возрастов цирконов из гранитоидов медно-порфировых месторождений Урала // Литосфера. 2017. Т. 17. № 5. С. 113–126.
  14. Забелин В. И. Элементы геолого-генетической модели Аксугского медно-молибденового месторождения // Магматизм и металлогения рудных районов Тувы. Новосибирск: Наука, 1992. С. 92–103.
  15. Знаменский С.Е., Шафигуллина Г.Т., Знаменская Н.М., Косарев А.М. Вознесенское медно-порфировое месторождение (Южный Урал): структурный контроль оруденения и геохимия интрузивных пород // Вестник академии наук Рб. 2019. Т. 31. № 2(94). С. 25–35.
  16. Кудрявцев Ю.К., Третьякова Е.Н., Сальников А.Е., Рахимипур Г.Р. Геолого-геохимические модели разноранговых рудных объектов (Au)-Mo-Cu-порфирового семейства. М.: ИМГРЭ, 2012. 141 с.
  17. Кужугет Р.В., Хертек А.К., Лебедев В.И., Забелин В.И. Особенности состава самородного золота в рудных ассоциациях Ак-Сугского золото-медно-молибденпорфирового месторождения, Восточная Тува // Геология и минерально-сырьевые ресурсы Сибири. 2015. № 2 (22). С. 63–74.
  18. Нагорная Е.В. Минералогия и зональность молибден-медно-порфирового рудного поля Находка, Чукотка. Автореф. дис … к.г.-м.н. 2013. 28 с.
  19. Петровская Н.В. Самородное золото. М.: Наука, 1973. 348 с.
  20. Плотинская О.Ю. Порфирово-эпитермальные системы Урала: минералы-индикаторы, эволюция и источники вещества // Металлогения древних и современных океанов-2023. Миасс: ЮУ ФНЦ МиГ УрО РАН, 2023. С. 59–61.
  21. Реддер Э. Флюидные включения в минералах. М.: Мир, 1978. Т. 1. 360 с.
  22. Спиридонов Э.М. Обзор минералогии золота в ведущих типах Au минерализации // Золото Кольского полуострова и сопредельных регионов. Тр. Всерос. (с междунар. уч.) науч. конф., посвящ. 80-летию КНЦ РАН. Апатиты, 26–29 сент. 2010 г. K&M, 2010. С. 143–171.
  23. Afifi A.M., Kelly W.C., Essene E.J. Phase relations among tellurides, sulphides and oxides: I. Thermochemicaldata and calculated equilibria // Econ. Geol. 1988. V. 83. P. 377–404.
  24. Augé T, Petrunov R, Bailly L. On the origin of the PGE mineralization in the Elatsite porphyry Cu-Au deposit, Bulgaria: comparison with the Baula-Nuasahi Complex, India, and other alkaline PGE-rich porphyries // Can. Mineral. 2005. V. 43. P. 1355–1372.
  25. Barton P.B., Skinner B.J. Sulfide mineral stabilities // Geochemistry of Hydrothermal Ore Deposits. Willey & Sons: New York, USA. 1979. P. 278–403.
  26. Beane R.E. The magmatic-meteoric transition: Geothermal Resources Council. Special Report 13. 1983. P. 245–253.
  27. Berger B.R., Henley R.W. Advances in understanding of epithermal gold-silver deposits with special reference to the Western United States // Econ. Geol. 1989. V. 84. P. 405–423.
  28. Berzin N.A., Coleman R.G., Dobretsov N.L., Zonenshain L.P., Xiao Xuchang, Chang E.Z. Geodynamic map of the western part of Paleoasian Ocean // Russian Geology and Geophysics. 1994. V. 35. P. 5–22.
  29. Berzin N.A., Kungurtsev L.V. Geodynamic interpretation of Altai–Sayan geological complexes // Russian Geology and Geophysics. 1996. V. 37. P. 56–73.
  30. Berzina A.N., Berzina A.P., Gimon V.O. Paleozoic-Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review) // Minerals. 2016. V. 6(6). P. 1–25.
  31. Berzina A.N., Stein H.J., Zimmerman A., Sotnikov V.I. Re-Os ages of molybdenite from porphyry and greisen Mo-W deposits of southern Siberia (Russia) preserve metallogenic record // Mineral Exploration and Sustainable Development / Eds. D. Eliopoulos et al. Millpress, Rotterdam, 2003. V. 1. P. 231–234.
  32. Bodnar R.J. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions // Geochim. Cosmochim. Acta. 1993. V. 57. P. 683–684.
  33. Atkinson A.B.Jr. (2002) A model for the PTX properties of H2O-NaCl. Unpublished MSc Thesis, Dept. of Geosciences, Virginia Tech, Blacksburg VA, 133 p.
  34. Bodnar R.J., Beane, R.E. Temporal and spatial variations in hydrothermal fluid characteristics during vein filling in preore cover overlying deeply buried porphyry copper-type mineralization at Red Mountain, Arizona. Econ. Geol. 1980. V. 75. P. 876–893.
  35. Bodnar R.J., Vityk M.O. Interpretation of microthermometric data for H2O–NaCl fluid inclusions // Fluid Inclusions in Minerals: Methods and Applications: De Vivo, B., Frezzotti, M.L., Eds. Virginia Tech: Blacksburg, VA, USA. 1994. P. 117–130.
  36. Bogdanov K., Filipov A., Kehayov R. Au–Ag–Te–Se minerals in the Elatsite porphyry-copper deposit, Bulgaria // Bulgarian Academy of Sciences. Geochemistry // Mineral. Petrol. 2005. V. 43. P. 13–19.
  37. Chen J., Tang J., Cong Y., Dong Q., Hao J. Geological characteristics and metallogenic model in the Yulong porphyry copper deposit, East Tibet // Acta Geologica Sinica. 2009. V. 83. P. 1887–1900.
  38. Chen X.H., Wang Z.H., Chen Z.L., Seitmuratova E., Han S.Q., Zhou Q., Ye B.Y. SHRIMP U-Pb, Ar-Ar and fission-track geochronology of W–Mo deposits in the Balkhash metallogenic Belt (Kazakhstan), Central Asia, and the geological implications // J. Asian Earth Sciences. 2015. V. 110. P. 19–32.
  39. Cheng Z.G., Zhang Z.C., Chai F.M., Hou T., Santosh M., Turesebekov A., Nurtaev B.S. Carboniferous porphyry Cu-Au deposits in the Almalyk ore field, Uzbekistan: the Sarycheku and Kalmakyr examples // International Geology Review, 2017.
  40. Cooke D.R., Hollings P., Chang Z. Philippine porphyry and epithermal deposits: an introduction // Econ. Geol. 2011. V. 106 (8). P. 1253–1256.
  41. Coplen T.B. Normalization of oxygen and hydrogen data // Chem. Geology. 1988. V. 72. P. 293–297.
  42. Crane D., Kavalieris I. Geologic overview of the Oyu Tolgoi porphyry Cu–Cu–Mo deposits, Mongolia // Society of Economic Geologists Special Publication. 2012. V. 16. P. 187–213.
  43. Economou-Eliopoulos, M. Platinum-group element potential of porphyry deposits. In: Mungall, J.E. (Ed.), Exploration for Platinum-group Element Deposits // Mineral. Association of Canada, Short Course. 2005. V. 35. P. 203–246.
  44. Economou-Eliopoulos M. Platinum-group elements (PGE) in various geotectonic settings: opportunities and risks // Hell. J. Geosc. 2010. V. 45. P. 65–82.
  45. Economou-Eliopoulos M., Eliopoulos D.G., Tsoupas G. On the diversity of the PGE content in chro- mitites hosted in ophiolites and in porphyry-Cu systems: Controlling factors // Ore Geol. Rev. 2017. V. 88. P. 156–173.
  46. Eliopoulos D.G., Economou-Eliopoulos M., Zelyaskova-Panayiotova M. Critical factors controlling Pd and Pt potential in porphyry Cu-Au deposits: Evidence from the Balkan Peninsula // Geosciences. 2014. V. 4. P. 31–49.
  47. Gammons C.H., Bloom M.S., Yu.Y. Experimental investigation of the hydrothermal geochemistry of platinum and palladium: I. Solubility of platinum and palladium sulfide minerals in NaCl / H2SO4 solutions at 300°C // Geochim. Cosmochim. Acta. 1992. V. 56. № 11. P. 3881–3894.
  48. Golovanov I.M., Seltmann R. Kremenetsky A.A. The Porphyry Cu–Au–Mo deposits of Central Eurasia: 2. The Almalyk (Kalmakyr-Dalnee) and Saukbulak Cu–Au porphyry systems, Uzbekistan // Porter, T.M., ed., Superporphyry copper and gold deposits – a global perspective. Adelaide: PGC Publishing. 2005. V. 2. P. 513–523.
  49. Hanley J.J. The aqueous geochemistry of the platinum-group elements (PGE) in surficial, low-T hydrothermal and high-T magmatic-hydrothermal environments. Exploration for Platinum-group element deposits. 2005. V. 35. P. 35–56.
  50. Hedenquist J.W, Arribas A.Jr., Reynolds T.J. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines // Econ. Geol. 19981. V. 93. P. 373–404.
  51. Hedenquist J.W., Richards J. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits // Richards J.P., Larson P.B. (eds) Techniques in hydrothermal ore deposits geology. Rev. Econ. Geol. 19982. V. 10. Ch. 10. P. 235–256.
  52. Hedenquist J. W., Arribas A., Gonzalez-Urien E. Exploration for epithermal gold deposits, Gold in 2000 // SEG Rev. 2000. V. 13. P. 245–277.
  53. Hoefs J. Stable Isotope Geochemistry. Springer: Berlin / Heidelberg, Germany. 2009. P. 281.
  54. Hou Z., Zhang H., Pan X., Yang Z. Porphyry Cu(–Mo–Au) deposits related to melting of thickened mafic lower crust – examples from the eastern Tethyan metallogenic domain // Ore Geol. Rev. 2011. V. 39. P. 21–45.
  55. Jenchuraeva R.J. Tectonic settings of porphyry type mineralization and hydrothermal alteration in Paleozoic island arcs and active continental margins, Kyrghyz Range (Tien Shan) Kyrghyzstan // Mineral. Deposita. 1997. V. 32(5). P. 434–440.
  56. Kesler S.E. Copper, molybdenum, and gold abundances in porphyry copper deposits // Econ. Geol. 1973. V. 68. P. 106–112.
  57. Kudryavtsev Y.K. The Cu-Mo deposits of Central Kazakhstan // In: Shatov V., Seltmann R., Kremenetsky A., Lehmann B., Popov V., Ermolov P. (Eds.) Granite-related ore deposits of Central Kazakhstan and Adjacent Areas. St. Petersburg: Glagol Publishing House. 1996. P. 119–144.
  58. Kuzhuget R.V., Mongush A.A., Mongush A-D.O. Evolution of chemical composition of fahlores of the Ak-Sug gold-molybdenum-copper-porphyry deposit (North-East Tuva)// Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018. V. 329. № 2. P. 81–91.
  59. LeFort D., Hanley J., Guillong M. Subepithermal Au–Pd mineralization associated with an alkalic porphyry Cu–Au deposit, Mount Milligan, Quesnel Terrane, British Columbia, Canada // Econ. Geol. 2011. V. 106. P. 781–808.
  60. Li Y.; Liu J. Calculation of sulfur isotope fractionation in sulfides // Geochimica et Cosmochimica Acta. 2006. V. 70. P. 1789–1795.
  61. Lickfold V., Cooke D.R., Crawford A.J., Fanning C.M. Shoshonitic magmatism and the formation of the Northparkes porphyry Cu-Au deposits, New South Wales // Australian J. Earth Sciences. 2007. V. 54. P. 417–444.
  62. Lindgren W. Mineral deposits. 4th Edition: New York: McGraw-Hill. 1933. 930 p.
  63. Marushchenko L.I., Baksheev I.A., Nagornaya E.V., Nikolaev Y.N., Vlasov E.A., Chitalin A.F., Nikolaev Yu.N., Vlasov E.A. Compositional evolution of the tetrahedrite solid solution in porphyry-epithermal system: A case study of the Baimka Cu–Mo–Au trend, Chukchi Peninsula, Russia // Ore Geol. Rev. 2018. V. 103. P. 21–37.
  64. Melfos V., Voudouris P. Fluid evolution in Tertiary magmatic-hydrothermal ore systems at the Rhodope metallogenic province, NE Greece. A review // Geologia Croatica. 2016. V. 69(1), P. 157–167, 491–560.
  65. Nagornaya E.V., Baksheev I.A., Bryzgalov I.A., & Yapaskurt V.O. Minerals of the Au–Ag–Pb–Te–Se–S system of porphyry–copper–molybdenum deposits from the Nakhodka ore field, Chukchi Peninsula, Russia // Moscow University Geology Bulletin. 2012. V. 67. № 4. P. 233–239.
  66. Ohmoto H. Stable isotope geochemistry of ore deposits // In: Stable isotopes in high temperature geological processes // Rev. Mineral. Geochem. 1986. V. 16. P. 491–560.
  67. Ohmoto H., Goldhaber M.B. Sulfur and carbon isotopes // Barnes H.L. (Ed.) Geochemistry of hydrothermal ore deposits. 3rd Edition. 1997. New York: Wiley. P. 435–486.
  68. Ohmoto H., Rye R.O. Isotopes of sulfur and carbon // Geochemistry of hydrothermal ore deposits. New York: Wiley. 1979. P. 509–567.
  69. Pašava J., Vymazlova A., Košler J. Platinum-group elements in ores from the Kalmakyr porphyry Cu–Au–Mo deposit, Uzbekistan: bulk geochemical and laser ablation ICPMS data // Mineral. Deposita. 2010. V. 45. P. 411–418.
  70. Plotinskaya O.Yu., Chugaev A.V., Seltmann R. Lead isotope systematics of porphyry-epithermal spectrum of the Birgilda-Tomino ore cluster in the South Urals, Russia // Ore Geol. Rev. 20171. V. 85. P. 204–215.
  71. Plotinskaya O.Yu., Grabezhev A.I., Tessalina S., Seltmann R., Groznova E.O., Abramov S.S. Porphyry deposits of the Urals: geological framework and metallogeny // Ore Geology Reviews. 20172. V. 85. P. 153–173.
  72. Plotinskaya O.Yu., Azovskova O.B., Abramov S.S., Groznova E.O., Novoselov K.A, Seltmann R., Spratt J. Precious metals assemblages at the Mikheevskoe porphyry copper deposit (South Urals, Russia) as proxies of epithermal overprinting // Ore Geol. Rev. 2018. V. 94. P. 239–260.
  73. Pollard P.J., Pelenkova E., Mathur R. Paragenesis and Re-Os molybdenite age of the Cambrian Ak-Sug porphyry Cu-Au-Mo deposit, Tyva Republic, Russian Federation // Econ. Geol. 2017. V. 112. P. 1021–1028.
  74. Porter T.M. The geology, structure and mineralization of the Oyu Tolgoi porphyry copper–gold–molybdenum deposits, Mongolia: A review // Geoscience Frontiers. 2016. № 7. P. 375–407.
  75. Reynolds T.J., Beane R.E. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit // Econ. Geol. 1985. V. 80. P. 1328–1347.
  76. Richards J.P. Giant ore deposits formed by optimal alignments and combinations of geological processes // Nature Geoscience. 2013. V. 6. P. 911–916.
  77. Richards J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits – products of remelting subduction-modified lithosphere // Geology. 2009. V. 37. № 3. P. 247–250.
  78. Rudnev S.N., Serov P.A., Kiseleva V.Yu. Vendian – Early Paleozoic granitoid magmatism in Eastern Tuva // Russ. Geol. Geophys. 2015. V. 56(9). P. 1232–1255.
  79. Seltmann R., Porter T.M., Pirajno F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: a review // J. Asian Earth Sciences. 2014. V. 79. P. 810–841.
  80. Shatov V.V., Moon C.J., Seltmann R. Discrimination between volcanic associated massive sulphide and porphyry mineralisation using a combination of quantitative petrographic and rock geochemical data: A case study from the Yubileinoe Cu–Au deposit, western Kazakhstan // J. Geochem. Explor. 2014. V. 147. P. 26–36.
  81. Shen P., Pan H., Wang J., Zhou T. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock? // Mineral. Deposita. 2014. V. 49(6). P. 709–731.
  82. Shikazono N.A. comparison of temperatures estimated from the electrum–sphalerite–pyrite–argentite assemblage and filling temperatures of fluid implications from epithermal Au–Ag vein-type deposits in Japan // Econ. Geol. 1985. V. 80. No 5. P. 1415–1424.
  83. Sillitoe R.H. Exploration of porphyry copper lithocaps / Pacific Rim Congress. Melbourne: Australasian Institute of Mining and Metallurgy. 1995. P. 527−532.
  84. Sillitoe R.H. Porphyry copper systems // Econ. Geol. 2010. V. 105. P. 3–41.
  85. Sillitoe R.H., Hedenquist J.W. Linkages between volcano-tectonic settings, ore-fluid composition, and epithermal precious metal deposits // Society of Economic Geologists Special Publication. 2003. № 10. P. 315–343.
  86. Soloviev, S.G., Kryazhev, S.G., Semenova, D.V., Kalinin, Y.A., Dvurechenskaya, S.S., & Sidorova, N.V. Geology, mineralization, igneous geochemistry, and zircon U-Pb geochronology of the Early Paleozoic shoshonite-related Julia skarn deposit, SW Siberia, Russia: toward a diversity of Cu-Au-Mo skarn to porphyry mineralization in the Altai-Sayan orogenic system // Ore Geol. Rev. 2022. 104706.
  87. Sotnikov V.I., Berzina A.N., Economou-Eliopoulos M., Eliopoulos D.G. Platinum and palladium in ores of porphyry Cu–Mo deposits in Siberia and Mongolia // Doklady Earth Sciences. 2001. V. 379. P. 546–549.
  88. Spiridonov E., Maleev M., Kovachev V., Kulikova I., Nazmova G., Filimonov S. Minerals of fahlore group: indicators of ore genesis // Bulgarian Geological Society, 80th Anniversary. Proc. of the Jubilee International Conference. Sofia: Bulgarian Geologi cal Society Publ. 2005. P. 79–82.
  89. Steele-MacInnis M. Lecumberri-Sanchez P., Bodnar R.J. HokieFlincs_H2O–NaCl: a Microsoft excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl // Computers & Geosciences. 2012. V. 49. P. 334–337.
  90. Tarkian M., Hunken U., Tokmachieva M., Bogdanov K. Precious-metal distribution and fluid-inclusion petrography of the Elatsite porphyry copper deposit, Bulgaria // Mineral. Deposita. 2003. V. 38. P. 261–281.
  91. Tarkian M., Koopmann G. Platinum-group minerals in the Santo Tomas II (Philex) porphyry copper-gold deposit, Luzon Island, Philippines // Mineral. Deposita. 1995. V. 30. P. 39–47.
  92. Tessalina S., Plotinskaya O. Silurian to Carboniferous Re-Os molybdenite ages of the Kalinovskoe, Mikheevskoe and Talitsa Cu–Mo porphyry deposits in the Urals: implications for geodynamic setting // Ore Geol. Rev. 2017. V. 85. P. 174–180.
  93. Titley S.R. Copper, molybdenum, and gold content of some porphyry copper systems of the southwestern and western Pacific. Econ. Geol. 1978. V. 73 (5). P. 977–981.
  94. Toulmin P., Barton P.B., Wiggins L.B. Commentary on the sphalerite geobarometer // American Mineralogist. 1991. V. 76. P. 1038–1051.
  95. Voudouris P. A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece // Mineral. Petrol. 2006. V. 87. P. 241–275.
  96. Voudouris P.A. Comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece // Mineral. Petrol. 2006. V. 87. P. 241–275.
  97. Voudouris P.C., Melfos V, Spry P.G., Baker T. Cenozoic porphyry-epithermal and other intrusion-related deposits in northeastern Greece: geological, mineralogical and geochemical constraints // Eocene to Miocene Hydrothermal Deposits of Northern Greece and Bulgaria: Relationships Between Tectonic-Magmatic Activity, Alteration, and Gold Mineralization. 2017. V. 54. P. 43–83.
  98. Wang Y.F., Chen H.Y., Xiao B., Han J.S., Fang J., Yang J.T., Jourdan F. Overprinting mineralization in the Paleozoic Yandong porphyry copper deposit, Eastern Tianshan, NW China – evidence from geology, fluid inclusions and geochronology // Ore Geol. Rev. 2017. P. 148–167.
  99. Wang Y.H., Xue C.J., Liu J.J., Wang J.P., Yang J.T., Zhang F.F., Zhao Z.N., Zhao Y.J. Geochemistry, geochronology, Hf isotope, and geological significance of the Tuwu porphyry copper deposit in Eastern Tianshan, Xinjiang // Acta Petrologica Sinica. 2014. V. 30. P. 3383–3399.
  100. White N.C., Hedenquist J.W. Epithermal gold deposits: styles, characteristics, and exploration // Society of Economic Geologists Newsletter. 1995. V. 23. P. 9–13.
  101. Wilson A.J., Cooke D.R., Stein H.J., Fanning C.M., Holliday J.R. Tedder I.J. U-Pb and Re-Os geochronologic evidence for two alkalic porphyry ore-forming events in the Cadia District, New South Wales, Australia // Econ. Geol. 2007. V. 102. P. 3–26.
  102. Wood S.A. The aqueous geochemistry of the platinum-group elements with applications to ore deposits // The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. 2002. V. 54. P. 211–249.
  103. Xiong Y., Wood S.A. Experimental quantification of hydrothermal solubility of platinum-group elements with special reference to porphyry copper environments // Miner. Petrol. 2000. V. 68. № 1–3. P. 1–28.
  104. Yarmolyuk V.V., Kovalenko V.I. Deep Geodynamics and Mantle Plumes: their role in the formation of the Central Asian fold belt // Petrology. 2003. V. 11(6). P. 504–531.
  105. Zeng Q.D., Liu J.M., Chu S.X., Wang Y.B., Sun Y., Duan X.X., Zhou L.L., Qu W.J. Re-Os and U-Pb geochronology of the Duobaoshan porphyry Cu–Mo–(Au) deposit, Northeast China, and its geological significance // J. Asian Earth Sciences. 2014. V. 79. P. 895–909.
  106. Zhang L.-G., Liu J.-X., Zhou H.B., Chen Z.-S. Oxygen isotope fractionation in the quartz–water–salt system // Econ. Geol. 1989. V. 89. P. 1643–1650.
  107. Zhao X.-B., Xue C.-J., Chi G.-X., Mo X.-X., Nurtaev B. Zhang G.-Z. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes // Ore Geol. Rev. 2017. V. 86. P. 807–824.
  108. Zheng Y.F. Oxygen isotope fractionation in carbonate and sulfate minerals // Geochem. J. 1999. V. 33. P. 109–126.

补充文件

附件文件
动作
1. JATS XML
2.

下载 (1MB)
3.

下载 (319KB)
4.

下载 (2MB)
5.

下载 (2MB)
6.

下载 (1MB)
7.

下载 (1MB)
8.

下载 (1MB)
9.

下载 (2MB)
10.

下载 (3MB)
11.

下载 (2MB)
12.

下载 (1MB)
13.

下载 (167KB)
14.

下载 (47KB)

版权所有 © Russian Academy of Sciences, 2023