The Kirovskoe gold deposit in talc-carbonate rocks (S. Urals): mineralogy, geochemistry, physicochemical conditions of formation and genesis

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The deposit belongs to the type of aposerpentinite gold-bearing "serpentine veins" and is localized in the thrust zone of NW dipping, separating the Dzhabyk-Karagay anticlinorium and the Sukhtelinsky synclinorium. Mineralization is controlled by the thrust zone of NW dipping and tension cracks mainly of SEE dipping, caused by the dynamic influence of this Dzhabyk granitoid massif during its formation. Ores are represented by poor sulfide sheared and brecciated talc-carbonate rocks. Ore talc-carbonate metasomatism is manifested in the sequential replacement of serpentinites by talc and carbonates (breunnerite, magnesite) and ends with the formation of veinlet dolomite, talc and antigorite. Ore minerals are represented by disseminated small particles of native gold, sulfides and sulfoarsenides of Cu, Fe, Ni, Co (pentlandite, chalcopyrite, violarite, ulmanite, millerite, gersdorffite-cobaltite), as well as sulfoarsenides of Ir (irarsite) and Pt (platarsite). The sulfur content in the ores does not exceed 0.02 wt.%. Grains of native gold (Au-Ag solid solution with a fineness of more than 910‰) are enclosed in serpentine, chlorite, talc, and less often carbonate; they are often confined to shear cracks in metasomatites. Serpentinites at a distance from the deposit are specialized in Ni, Co and Cr. In addition, talc-carbonate rocks are recorded to have higher contents of granitophile elements (W, Sn, Rb, Cs, U) compared to serpentinites. Antigorite veinlets contain Ni, Sb and Ta, talc – Ag, dolomite – Mn, Sr, Ba, REE, Pb, Mo, Bi and Cd. Thermocryometric study of fluid inclusions in carbonates has established that talc-carbonate metasomatites were formed in the temperature range of 400–200°С from fluids belonging to the salt systems H2O–NaCl, H2O–NaCl–NaHCO3 and H2O–NaCl (MgCl2) of low salinity (2.6–5.3 wt.% equiv. NaCl). Interpretation of the results of the oxygen and carbon isotope composition of carbonates (δ18O and δ13C, respectively, 19.2–24.2‰ and -7.3–8.5‰), as well as oxygen and hydrogen of serpentine, talc and chlorite (δ18O = 12.5…18.2‰, δD = -50.6…-68.0‰) indicates a metamorphic origin of the fluid. This fluid was formed as a result of the interaction of juvenile water with volcanogenic-sedimentary rocks enclosing the ultramafic massif. Participation of water released during the replacement of serpentine and talc by carbonates, as well as magmatic fluid genetically related to the Dzhabyk granitoid massif, is allowed. It is assumed that Cu, Fe, Ni, Co, Au, Pt, Ir in the ores were extracted by carbon dioxide fluid from ultrabasic rocks, and the increased contents of granitophile elements (W, Sn, Rb, Cs, U, etc.) are associated with the influx of magmatic fluid.

Full Text

Restricted Access

About the authors

V. V. Murzin

Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences

Author for correspondence.
Email: murzin@igg.uran.ru
Russian Federation, Vonsovskogo str., 15, Yekaterinburg, 620110

A. Yu. Kisin

Institute of Geology and Geochemistry, Ural Branch, Russian Academy of Sciences

Email: kissin@igg.uran.ru
Russian Federation, Vonsovskogo str., 15, Yekaterinburg, 620110

References

  1. Артемьев Д.А., Зайков В.В. Тальк-карбонатные метасоматиты и их роль в формировании кобальт-медноколчеданного оруденения в ультрамафитах Главного уральского разлома // Литосфера. 2009. № 1. С. 47–69.
  2. Бакшеев И.А., Савина Д.Н. Минералогия и условия формирования тальк-карбонатных метасоматитов пропилитовой, гумбеитовой и березит-лиственитовой формаций Среднего Урала // Минералогия Урала: Материалы 3-го Регионального совещания. Т. 1. Миасс, 1998. С. 24–27.
  3. Бакшеев И.А., Устинов В.И., Кудрявцева О.Е. Изотопно-геохимические параметры формирования среднетемпературных гидротермальных месторождений талька, вольфрама и золота на примере Урала // Геохимия. 2004. № 8. С. 843–851.
  4. Борисенко А.С. Изучение солевого состава газово-жидких включений в минералах методом криометрии // Геология и геофизика. 1997. № 8. С. 16–27.
  5. Бортников Н.С. Геохимия и происхождение рудообразующих флюидов в гидротермально-магматических системах в тектонически активных зонах // Геология руд. месторождений. 2006. Т. 48. № 1. С. 3–28.
  6. Геология СССР, Т. 12. Ч. 2. Полезные ископаемые. М.: Недра, 1972.
  7. Игнатьев А.В., Веливецкая Т.А. Лазерная методика выделения воды из ОН-минералов для измерения изотопного состава водорода // XVII Симпозиум по геохимии изотопов. Москва: ГЕОХИ РАН, 2004. С. 98.
  8. Колонин Г.Р. Физико-химические особенности европия как возможного индикатора условий минералообразования // Докл. РАН. 2006. Т. 408. № 4. С. 508–511.
  9. Мосейчук В.М., Яркова А.В., Михайлов И.Г., Кашина Л.В., Сурин Т.Н., Плохих Н.А., Цин Д.Ф. Государственная геологическая карта Российской Федерации. Масштаб 1 : 200 000. Серия Южно-Уральская. Лист N-40-XXIV. Объяснительная записка. М.: Московский филиал ФГБУ «ВСЕГЕИ», 2017.
  10. Мурзин В.В. Фракционирование изотопов кислорода и водорода в равновесиях талька, хлорита и серпентина с водой (обзор экспериментальных данных) // Тр. ИГГ УрО РАН. Вып. 161. Екатеринбург: ИГГ УрО РАН, 2014. С. 198–203.
  11. Мурзин В.В., Варламов Д.А. Минералогия золотоносных тальк-карбонатных пород Кировского месторождения на Южном Урале // Вестник Уральского отделения Российского минералогического общества. Вып. 12. Екатеринбург: ИГГ УрО РАН, 2015. C. 84–95.
  12. Мурзин В.В., Гараева А.А. Термокриометрическое изучение газово-жидких включений в золотоносных тальк-карбонатных породах Кировского месторождения на Южном Урале // Ежегодник-2014. Тр. ИГГ УрО РАН. Вып. 162. 2015. С. 201–205.
  13. Мурзин В.В., Сазонов В.Н., Варламов Д.А., Шанина С.Н. Золотое оруденение в родингитах массивов альпинотипных гипербазитов // Литосфера. 2006. № 1. С. 113–134.
  14. Мурзин В.В., Варламов Д.А., Шанина С.Н. Новые данные о золото-антигоритовой формации Урала // Докл. РАН. 2007. Т. 417. № 6. С. 810–813.
  15. Мурзин В.В., Варламов Д.А., Ронкин Ю.Л., Шанина С.Н. Происхождение золотоносных родингитов Карабашского массива альпинотипных гипербазитов на Южном Урале // Геология руд. месторождений. 2013. Т. 55. № 4. С. 320–341. https://doi.org/10.7868/S0016777013040059
  16. Мурзин В.В., Варламов Д.А., Пальянова Г.А. Условия образования золотоносных магнетит-хлорит-карбонатных пород Карабашского массива гипербазитов (Южный Урал) // Геология и геофизика. 2017. V. 58. № 7. С. 1006–1020. https://doi.org/10.15372/GiG20170704
  17. Сазонов В.Н. Золотопродуктивные метасоматические формации подвижных поясов. (Геодинамические обстановки и PTX-параметры формирования, прогностическое значение). Екатеринбург: УГГГА, 1998.
  18. Сазонов В.Н., Огородников В.Н., Поленов Ю.А. Метасоматиты золоторудных и тальковых месторождений Урала, локализующихся в ультрабазитах, их теоретическая и практическая значимость // Труды ИГГ УрО РАН. Вып. 156. 2009. С. 109–111.
  19. Сазонов В.Н., Огородников В.Н., Коротеев В.А., Поленов Ю.А. Месторождения золота Урала. Екатеринбург: УГГГА, 2001.
  20. Сазонов В.Н., Коротеев В.А. Основные золотопродуктивные и сопутствующие метасоматические формации Урала (геологическая позиция, зональность, минералогическая, химическая и текстурно-структурная трансформация эдуктов и прогностическое значение). Екатеринбург: ИГГ УрО РАН, 2009.
  21. Beinlich A., Plumper O., Hovelmann J., Austrheim H., Jamtveit B. Massive serpentinite carbonation at Linnajavri, N–Norway // Terra Nova. 2012. V. 24. № 6. Р. 446–455.https://doi.org/10.1111/j.1365-3121.2012.01083.x
  22. Bodnar R.J., Vityk M.O. Interpretation of microthermometric data for H2O–NaCl fluid inclusions // Fluid inclusions in minerals: methods and applications. Edited by: Benedetto De Vivo and Maria Luce Frezzotti. Pontignano-Siena, 1994. P. 117–130.
  23. Hansen L.D., Dipple G.M., Gordon T.M., Kellett D.A. Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration // Can. Miner. 2005. V. 43. № 1. P. 225–239.
  24. Hedenquist J.W., Henley R.W. The Importance of CO2 on Freezing Point Measurements of Fluid Inclusions: Evidence from Active Geothermal Systems and Implications for Epithermal Ore Deposition // Economic Geologist. 1985. V. 80. Р. 1379–1406.
  25. Kissin A.Yu., Pritchin M.E., Ozornin D.A. Geological and structural position of the Svetlinsky gold deposit (the Southern Urals) // J. of Mining Institute. 2022. V. 255. Р. 369–376. https://doi.org /10.31897/PMI.2022.46
  26. Pritchin M.E., Kisin A.Yu., Vikent’eva O.V., Ozornin D.A., Travin A.V., Vikentyev I.V. Ar40/Ar39 Dating of Hydrothermal Processes in Large Gold Deposits of the Kochkar Antinclinorium (South Urals, Russia) // Geology of Ore Deposits. 2024. V. 66. № 5. Р. 570–580. https://doi.org /10.1134/S1075701524700338
  27. Saccocia P.J., Seewald J.S., Shanks W.C. Oxygen and hydrogen isotope fractionation in serpentine–water and talc–water systems from 250 to 450C, 50 Mpa // Geochim. Cosmochim. Acta. 2009. V. 73. № 22. Р. 6789-6804. https://doi.org/10.1016/j.gca.2009.07.036
  28. Schandl E.S., Naldrett A.J. CO2 metasomatism of serpentinites, south of Timmins, Ontario// Canad. Miner. 1992. V. 30. P. 93–108.
  29. Taylor H.P.Jp. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition // Econ. Geol. 1974. V. 69. P. 843–883.
  30. Velivetskaya T.A., Ignatiev A.V., Gorbarenko S.A. Carbon and oxygen isotope microanalysis of carbonate // Rapid communications in mass spectrometry. 2009. V. 23. P. 2391–2397. https://doi.org/10.1002/rcm.3989
  31. Warr L.N. IMA–CNMNC approved mineral symbols // Mineralogical Magazine. 2021. V. 85. P. 291–320. https://doi.org/10.1180/mgm.2021.43
  32. Zheng Y.F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates // Earth Planet. Sci. Lett. 1993. V. 120. P. 247–263.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic geological map of the area according to (Moseichuk et al., 2017). 1 - marbles, marbleized bituminous limestones; metasandstones and meta-siltstones (C1); 2 - andesites, andesite-basalts and their tuffs, apovolcanogenic greenschists (D2); 3 - sericite-quartz schists and quartzites (D3); 4 - apovolcanogenic crystalline schists (O1); 5 - granite gneisses and granitoids of the Dzhabyk massif (Pz3); 6 - antigorite and chrysotile-antigorite apodunite serpentinites; 7 - antigorite and chrysotile-antigorite apoharzburgite serpentinites; 8 - geological boundaries; 9 – established (a) and assumed (b) thrusts; 10 – direction of movement (a) and fall (b); 11 – populated areas; 12 – research area.

Download (7MB)
3. Fig. 2. Schematic geological map of the Kirov gold deposit (Geology of the USSR, 1972). 1 - metamorphosed sedimentary rocks, 2 - serpentinites, 3 - sheared and brecciated serpentinites, 4 - amphibole, biotite and chlorite rocks, 5 - talc-carbonate serpentinites, 6 - actinolite rocks, 7 - gold-bearing talc-carbonate metasomatites exposed on the surface, 8 - fault.

Download (5MB)
4. Fig. 3. Ore textures: a – brecciated, b – schistose (banded), c, d – veined. Minerals: Tc – talc, Ant – antigorite, Dol – dolomite, Brn – breunnerite, Qz – chalcedony, Srp – talcified and carbonated serpentinite, Cb – carbonate.

Download (1MB)
5. Fig. 4. Chondrite-normalized REE distribution trends: a – in serpentinite (1), talc-carbonate metasomatite (2) and chloritized serpentinite (3); b – in veinlet talc (1), antigorite (2) and dolomite (3).

Download (1MB)
6. Fig. 5. Relationships of chlorite, talc and carbonates in talc-carbonate metasomatites: a – scalloped chlorite (Chl) in coarse-flaked talc (Tc); b – replacement of magnesite (Mgs) by breunnerite (Brn) in antigorite mass (Atg).

Download (2MB)
7. Fig. 6. Ore minerals in serpentinite and talc-antigorite rock. a – development of antigorite plates (Atg) on pentlandite (Pn) and replacement of cobaltite (Cbt) by hypergene (?) arsenates and cobalt sulfoarsenates (Co,As,S) in serpentinite. The rock contains small grains of sperrylite (Spy) and irarsite (Irs); b – ulmannite (Ull) and millerite (Mlr), deposited along a microcrack in the talc-antigorite rock.

Download (1MB)
8. Fig. 7. Morphology and surface sculpture of native gold grains: a, b – dendritic, c – interstitial with imprints of carbonate grains, d – isometric in intergrowth with antigorite (Atg).

Download (1MB)
9. Fig. 8. Morphology and sizes of primary (a) and secondary (b) gas-liquid inclusions in carbonate.

Download (1MB)
10. Fig. 9. Thermocryometric characteristics of inclusions of the mineral-forming environment in various minerals of talc-carbonate metasomatites – breunnerite of the early talc-carbonate paragenesis and dolomite of the late antigorite-talc-carbonate paragenesis of the Kirovskoye deposit.

Download (1024KB)
11. Fig. 10. Oxygen and hydrogen isotope composition of fluid in equilibrium with antigorite serpentinite (Srp), chlorite (Chl), talc (Tlc) and vein antigorite (Atg) of the Kirovskoye deposit. The diagram shows the main natural water reservoirs.

Download (492KB)
12. Fig. 11. Interpretation of tectonic faults on a space image of the Kirovskoye deposit and its surroundings (IT resource: Google Earth Pro, 2021). Sp – serpentinites, O1 – Early Ordovician crystalline schists. Black dotted line – supposed steeply dipping faults.

Download (4MB)
13. Fig. 12. Thermocryometric characteristics of gas-liquid inclusions in minerals of carbon dioxide metasomatites from different deposits. Fields: I – listvenites and quartz veins of the Berezovskoye gold ore deposit according to (Bortnikov, 2006), II – talc-carbonate rocks of the Kirovskoye deposit, III – gold-bearing magnetite-chlorite-carbonate metasomatites of the Karabash massif and IV – talc-carbonate metasomatites at the Slade-Forbes chrysotile asbestos deposit (Schadnl, Naldrett, 1992).

Download (846KB)
14. Fig. 13. Thermodynamic modeling of the serpentinite carbonatization process at P = 1 kbar according to (Beinlinch et. al., 2012). Fields: I – serpentinite, II – slightly altered serpentinite (carbonate, talc after clinopyroxene), III – carbonated serpentinite (ophicarbonate), IV – talc-carbonate rock, V – listvenite (quartz-carbonate rock). Arabic numerals indicate reaction numbers indicated in the text. Gray field – conditions of carbonatization of serpentinites of the Kirovskoye deposit.

Download (437KB)
15. Fig. 14. Isotopic composition of carbonates of various carbon dioxide apoultry-ultrabasic metasomatites: 1 – talc-carbonate of the Kirov gold ore deposit (our data); 2 – talc-carbonate of the Shabrovskoye talc deposit (Baksheev et al., 2004); 3, 4 – listvenites of the Shabrovskoye (3) and Berezovskoye (4) deposits (Baksheev et al., 2004); 5 – magnetite-chlorite-carbonate rocks of the Karabash massif (Murzin et al., 2017).

Download (414KB)

Copyright (c) 2025 Russian academy of sciences