Influence of solar activity variations on interdiurnal variability of NmE obtained from ground-based low latitude ionosonde data in geomagnetically quiet conditions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The study of the interdiurnal variations in the statistical characteristics of the electron number density NmE of the ionospheric E layer peak for each month M of the year in geomagnetically quiet conditions at low and moderate solar activity was carried out based on hourly measurements of the critical frequency of the E layer of the Huancayo and Jicamarca ionosondes from 1957 to 1989 and 1998–2006, respectively. The authors have calculated the mathematical expectation NmEE(UT,M), NmEA(UT,M) arithmetic mean, the standard deviation σE(UT,M) and the variation coefficient CVE(UT,M) of NmE(UT,M) from NmEE(UT,M), respectively, where UT is the universal time. The calculations showed that the value of CVE(UT,M) that determines the relative interdiurnal NmE variability vary between 4–14 and 3–18% at low and moderate solar activity, respectively. It was found for the first time that the interdiurnal variability of NmE can either increase or decrease when solar activity changes from low to moderate levels. In the first case, the increase in σE(UT,M) prevails over the growth of NmEE(UT,M), in the second case, the growth of NmEE(UT,M) prevails over the increase in σE(UT,M).

全文:

受限制的访问

作者简介

A. Pavlov

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

编辑信件的主要联系方式.
Email: pavlov@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

N. Pavlovа

Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN)

Email: pavlov@izmiran.ru
俄罗斯联邦, Moscow, Troitsk

参考

  1. Акасофу С.-И., Чепмен С. Солнечно-земная физика. Часть 2. М.: Мир, 510 с. 1972.
  2. Антонова Л.А., Иванов-Холодный Г.С., Чертопруд В.Е. Аэрономия слоя Е (учет вариаций УФ-излучения Солнца и геомагнитных возмущений). М.: Янус, 196 c. 1996.
  3. Балдин К.В., Башлыков В.Н., Рукосуев А.В. Основы теории вероятностей и математической статистики. М.: ФЛИНТА, 489 с. 2016.
  4. Беккер С.А. Вероятностно-статистические модели нижней невозмущенной среднеширотной ионосферы, верифицированные по данным наземных радиофизических измерений. Автореф. дисс. … канд. физ.-мат. наук. М.: изд-во ИДГ РАН, 26 с. 2018.
  5. Брюнелли Б.Е., Намгаладзе А.А. Физика ионосферы. М.: Наука, 527 с. 1988.
  6. Дэйвид Г. Порядковые статистики. М.: Наука, 336 с. 1979.
  7. Дэвис К. Радиоволны в ионосфере. М.: Мир, 502 с. 1973.
  8. Зайдель A.H. Ошибки измерений физических величин. СПб.: Лань, 112 с. 2022.
  9. Козлов С.И., Ляхов А.Н., Беккер С.З. Основные принципы построения вероятностно-статистических моделей ионосферы для решения задач распространения радиоволн // Геомагнетизм и аэрономия. Т. 54. № 6. С. 767–779. 2014. https://doi.org/10.7868/S0016794014060121
  10. Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. М.: Физматлит, 816 с. 2006.
  11. Павлов А.В., Павлова Н.М. Влияние рефракции солнечного излучения на зенитный угол и времена восхода и захода Солнца в атмосфере // Геомагнетизм и аэрономия. Т. 50. № 2. С. 228–233. 2010.
  12. Павлов А.В., Павлова Н.М. Сравнение измеренных ионозондом Москвы и вычисленных концентраций электронов максимума слоя E ионосферы в весенних условиях // Геомагнетизм и аэрономия. Т. 55. № 2. С. 247–257. 2015. https://doi.org/10.7868/S0016794015020145
  13. Павлов А.В., Павлова Н.М. Зависимости от месяца года статистических характеристик NmE средних и низких широт в дневных геомагнито-спокойных условиях при низкой солнечной активности // Геомагнетизм и аэрономия. Т. 56. № 4. С. 431–436. 2016. https://doi.org/10.7868/S0016794016040167
  14. Пиггот В.П., Равер К. Руководство URSI по интерпретации и обработке ионограмм. М.: Наука, 342 с. 1978.
  15. Тэйлор Дж. Введение в теорию ошибок. М.: Мир, 272 с. 1985.
  16. Cander L.R. Ionospheric variability / Ionospheric Space Weather. / Ed. L.R. Cander. Cham, Switzerland: Springer. P. 59–93. 2019. https://doi.org/10.1007/978-3-319-99331-7_4
  17. David H.A. Order Statistics. NY and London: John Wiley & Sons, 272 p. 1970.
  18. Durivage M.A. Practical Engineering, Process, and Reliability Statistics. Milwaukee, WI: ASQ Quality Press, 356 p. 2022.
  19. Gatti P.L. Probability Theory and Mathematical Statistics for Engineers. London and NY: Spon Press of Taylor & Francis Group, 369 p. 2005. https://doi.org/10.1201/9781482267761
  20. Hunt S.M., Close S., Coster A.J., Stevens E., Schuett L.M., Vardaro A. Equatorial atmospheric and ionospheric modeling at Kwajalein missile range // Lincoln Laboratory Journal. V. 12. № 1. P. 45–64. 2000.
  21. Hedin A.E. MSIS-86 thermospheric model // J. Geophys. Res. – Space. V. 92. № 5. P. 4649 –4662. 1987. https://doi.org/10.1029/JA092iA05p04649
  22. Howell D.C. Statistical Methods for Psychology. Belmont, CA: Wadsworth Cengage Learning, 792 p. 2013.
  23. Keneshea T.J., Narcisi R.S., Swider W. Diurnal model of the E region // J. Geophys. Res. V. 75. N 2. P. 845 – 854. 1970. https://doi.org/10.1029/JA075i004p00845
  24. Liu H., Yamazaki J., Lei J. Day-to-day variability of the thermosphere and ionosphere / Upper Atmosphere Dynamics and Energetics / Space Physics and Aeronomy Collection, Geophysical Monograph Series 261. V. 4. / Eds. W. Wang, Y. Zhang, L.J. Paxton. Hoboken, NY: Wiley. P. 275–300. 2021. https://doi.org/10.1002/9781119815631.ch15
  25. Mendillo M. Day-to-day variability of the ionosphere / The Dynamical Ionosphere: A Systems Approach to Ionospheric Irregularity. / Eds. M. Materassi, B. Forte, A.J. Coster, S. Skone. Amsterdam: Elsevier. P. 7–11. 2020. https://doi.org/10.1016/B978-0-12-814782-5.00002-9
  26. Moore L., Mendillo M., Martinis C., Bailey S. Day-to-day variability of the E layer // J. Geophys. Res. – Space. V. 111. № 6. ID A06307. 2006. https://doi.org/10.1029/2005JA011448
  27. Nicolls M.J., Rodrigues F.S., Bust G.S. Global observations of E region plasma density morphology and variability // J. Geophys. Res. – Space. V. 117. № 1. ID A01305. 2012. https://doi.org/10.1029/2011JA017069
  28. Pavlov A.V. Ion chemistry of the ionosphere at E- and F-region altitudes: A review // Surv. Geophys. V. 33. № 5. P. 1133–1172. 2012. https://doi.org/10.1007/s10712-012-9189-8
  29. Pavlov A.V., Pavlova N.M. Comparison of NmE measured by the Boulder ionosonde with model predictions near the spring equinox // J. Atmos. Sol.-Terr. Phy. V. 102. P. 39–47. 2013. https://doi.org/10.1016/j.jastp.2013.05.006
  30. Pavlov A.V., Pavlova N.M. Influence of solar activity variations on interdiurnal variability of NmE in geomagnetically quiet conditions obtained from ground-based Dourbes // Geomagn. Aeronomy. V. 64. № 3. P. 376–390. 2024a. https://doi.org/10.1134/S0016793224600139
  31. Pavlov A.V., Pavlova N.M. Impact of the solar activity variations on the low-latitude day-to-day variability of NmF2 during geomagnetically quiet conditions obtained from the Huancayo and Jicamarca ionosonde observations // Pure Appl. Geophys. V. 181. № 7. P. 2177–2195. 2024b. https://doi.org/10.1007/s00024-024-03503-2
  32. Picone J.M., Hedin A.E., Drob D.P., Aikin A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues // J. Geophys. Res. – Space. V. 107. № 12. ID 1468. 2002. https://doi.org/10.1029/2002JA009430
  33. Richards P.G., Fennelly J.A., Torr D.G. EUVAC: A solar EUV flux model for aeronomic calculations // J. Geophys. Res. – Space. V. 99. № 5. P. 8981–8992. 1994. https://doi.org/10.1029/94JA00518
  34. Ross S.M. Introduction to Probability and Statistics for Engineers and Scientists. Amsterdam: Elsevier Academic Press, 624 p. 2004.
  35. Sojka J.J., Jensen J.B., David M., Schunk R.W., Woods T., Eparvier F., Sulzer M.P., Gonzalez S.A., Eccles J.V. Ionospheric model‐observation comparisons: E layer at Arecibo Incorporation of SDO‐EVE solar irradiances // J. Geophys. Res. – Space. V. 119. № 5. P. 3844−3856. 2014. https://doi.org/10.1002/2013JA019528
  36. Takayanagi K., Itikawa Y. Elementary processes involving electrons in the ionosphere // Space Sci. Rev. V. 11. № 23. P. 380−450. 1970. https://doi.org/10.1007/BF00241527
  37. Titheridge J.E. Production of the low-latitude night E layer // J. Geophys. Res. – Space. V. 106. № 7. P. 12781–12786. 2001. https://doi.org/10.1029/2000JA900145
  38. Titheridge J.E. Ionisation below the night F2 layer – A global model // J. Atmos. Sol.-Terr. Phy. V. 65. № 9. P. 1035–1052. 2003. https://doi.org/10.1016/S1364-6826(03)00136-6
  39. Titterington D.M., Smith A.F.M., Makov U.E. Statistical Analysis of Finite Mixture Distributions. Chichester, UK: John Wiley & Sons, 258 p. 1985.
  40. Verma J.P., Verma P. Determining Sample Size and Power in Research Studies. Singapore: Springer, 127 p. 2020.
  41. Yonezawa T. A consideration of the effective recombination coefficient in the E-region of the ionosphere // J. Atmos. Terr. Phys. V. 30. № 10. P. 473–478. 1968. https://doi.org/10.1016/0021-9169(68)90120-7

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Expressed as a percentage of the NmE dependence of the probability P(UT,M) for low solar activity conditions at 17:00 UT (11:59 SLT). The solid and dashed curves correspond to January and February (upper left panels), March and April (middle left panels), May and June (lower left panels), July and August (upper right panels), September and October (middle right panels), November and December (lower right panels).

下载 (1MB)
3. Fig. 2. Expressed as a percentage of the dependence on NmE of the probability P(UT,M) for conditions of moderate solar activity at 17:00 UT (11:59 SLT). The designations of the curves are the same as in Fig. 1.

下载 (2MB)
4. Fig. 3. Dependence of the CVE(UT,M) coefficient on the month of the year for low solar activity conditions at 06:59, 07:59, and 08:59 SLT (solid, dashed, and dotted curves in the upper left panel, respectively); 09:59, 10:59, and 11:59 SLT (solid, dashed, and dotted curves in the lower left panel, respectively); 12:59, 13:59, and 14:59 SLT (solid, dashed, and dotted curves in the upper right panel, respectively); 15:59 and 16:59 SLT (solid and dashed curves in the lower right panel, respectively).

下载 (1MB)
5. Fig. 4. Dependence of the coefficient CVE(UT,M) on the month of the year for conditions of moderate solar activity. The designations of the curves are the same as in Fig. 3.

下载 (1MB)
6. Fig. 5. Dependence of the parameter ∆ CVE(UT,M) on time for each month of the year.

下载 (1MB)
7. Fig. 6. Dependence of the parameters R1(UT,M) and R2(UT,M) on time from January to June. Solid and dashed curves correspond to R1(UT,M) and R2(UT,M).

下载 (1MB)
8. Fig. 7. Dependence of the parameters R1(UT,M) and R2(UT,M) on time from July to December. Solid and dashed curves correspond to R1(UT,M) and R2(UT,M).

下载 (1MB)

版权所有 © Russian Academy of Sciences, 2025