УДК 551.24

НЕОТЕКТОНИКА И ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ СЕВАНСКОЙ МЕЖГОРНОЙ ВПАДИНЫ (АРМЕНИЯ): НОВЫЕ СТРУКТУРНЫЕ И ПАЛЕОНТОЛОГИЧЕСКИЕ ДАННЫЕ

© 2023 г. Е. А. Шалаева¹, В. Г. Трифонов^{1,} *, Я. И. Трихунков¹, В. В. Титов², А. В. Авагян³, Л. Г. Саакян³, А. Н. Симакова¹, П. Д. Фролов¹, С. А. Соколов¹, М. А. Васильева¹, Д. М. Бачманов¹, Г. М. Овакимян³

¹Геологический институт РАН, Пыжевский пер. д. 7, 119017 Москва, Россия ²Федеральный исследовательский центр Южный научный центр РАН (ЮНЦ РАН), пр. Чехова, д. 41, 344006 Ростов-на-Дону, Россия ³Институт геологических наук НАН РА, пр-т Маршала Баграмяна, д. 24, 0019 Ереван, Армения *e-mail: trifonov@ginras.ru Поступила в редакцию 08.08.2022 г. После доработки 02.11.2022 г. После повторной доработки 15.02.2023 г. Принята к публикации 16.02.2023 г.

В статье представлены новые данные, полученные в результате полевых исследований Севанской межгорной впадины в Армении. Возникновение Севанской впадины в миоцене было связано с развитием Севанской миндалевидной структуры, ограниченной несколькими разломными зонами – правосдвиговой Памбак-Севан-Сюникской зоной разломов на северо-востоке (i), Гарнийской (ii) и Арпа-Зангезурской (iii) зонами на юго-западе. В Севанской миндалевидной структуре сформировались структура пулл-апарт Малого Севана и Гаварская миндалевидная структура, Гаварский горст, ряд разломов, а также зоны растяжения, в числе которых южная часть Большого Севана (восточная часть оз. Севан) и осевая зона Гегамского хребта. Развитие Севанской межгорной впадины продолжилось в плиоцене-четвертичное время на фоне подъема горного сооружения Малого Кавказа и Армянского нагорья, а также активного вулканизма Варденисского и Гегамского нагорий. Нами обобщены имеющиеся данные по геологическому строению и геодинамике Севанской межгорной впадины, приведены полученные данные по стратиграфии плиоцен-четвертичных отложений и их положению в структуре Севанской впадины. Показано, что акчагыльская трансгрессия Каспийского моря на рубеже плиоцена – плейстоцена в Севанскую впадину не проникала. Установлено, что Севанская впадина имеет гетерогенный генезис, обусловленный воздействием как региональной разломной, в первую очередь, сдвиговой тектоники, так и глубинными преобразованиями, выраженными плиоцен-четвертичным вулканизмом.

Ключевые слова: неотектоника, активные разломы, акчагыльская трансгрессия, Армянское нагорье, межгорная впадина, озерные отложения, плейстоценовая фауна **DOI:** 10.31857/S0016853X23020078, **EDN:** FZNLMC

введение

Севанская межгорная впадина расположена на Армянском нагорье. Впадина простирается на 85 км в длину и 43 км в ширину, и является одной из самых крупных структур нагорья (рис. 1). Впадина разделена на две котловины Малого Севана и Большого Севана. Глубина Малого Севана достигает 80 м, глубина Большого Севана — до 30 м. В плиоцен—четвертичное время впадина развивалась в условиях коллизии одновременно с подъемом Евразийской и Аравийской плит. В это время происходил подъем горного сооружения Малого Кавказа и Армянского нагорья, формированием региональных разломных зон, а также активного вулканизма, что определило особенности тектоники и геологического строения Севанской межгорной впадины.

Целью настоящей статьи является анализ строения, реконструкция истории позднекайнозойского развития, выявление природы и тектонических условий формирования Севанской

Рис. 1. Севанская миндалевидная структура, (по [23] с изменениями). На врезке: положение региона исследования. Памбак-Севан-Сюникская разломная зона: ПССР – северная ветвь; ПССР-1 – восточное продолжение северной ветви, СН – юго-восточная ветвь. Разломы: ГР – Гарнийский; АР – Акеринский; АЗР – Арпа-Зангезурский. Вулканические нагорья: ГН – Гегамское; ВН – Варденисское. Хребтъ: ПХ – Памбакскийх; ЗХ – Зангезурский. 1 – сдвиги; 2 – сбросы; 3 – надвиги и взбросы

межгорной впадины на основе данных предшественников и полученных нами материалов по тектонике и стратиграфии впадины, включая новые данные по магнито-стратиграфии, изотопному датированию, спорово-пыльцевому анализу и уникальную находку останков вымершего вида оленя *Arvernoceros*.

ГЕЛОГИЧЕСКИЙ ОЧЕРК

Северо-восточный борт Севанской межгорной впадины представлен Севано-Акеринской офиолитовой зоной, маркирующей позднемеловую сутуру Тетиса. Ультраосновные и основные породы офиолитовых покровов залегают в виде крупных недеформированных пластин или образуют зоны серпентинитового меланжа, местами подстилаемые олистостромовыми толщами [7, 10, 21, 27, 31].

Офиолитовый комплекс стратиграфически перекрыт терригенно толщей кампана, сложенной преимущественно красно-лиловыми и зелеными галечниками — продуктами размыва офиолитов, протягивающихися вдоль северо-восточного берега Большого Севана. Выше терригенно-обломочной толщи залегают известняки кампана—маастрихта, флишоидные толщи, мергели и нуммулитовые известняки эоцена, а также эоценовые вулканические породы базальтового, андезибазальтового, андезитового, трахиандезитового состава [6, 7, 10, 29].

Мы предполагаем, что офиолиты Севано-Акеринской зоны подстилают Севанскую межгорную впадину. Останцы этих покровов обнажены к юго-западу от оз. Севан в долине р. Веди. Время обдукции офиолитов коньяк—сантон [7, 10, 31].

Южный борт Севанской межгорной впадины ограничен северными склонами Варденисского вулканического нагорья. В приводораздельной части на востоке нагорья локально обнажены базальты, известняки, песчаники, алевролиты и аргиллиты мела-палеоцена. Выше залегают преимущественно вулканогенные толщи эоцена-антропогена преимущественно среднего и кислого составов, переслаивающиеся вулканогенно-осадочными породами и имеющие мощность в несколько километров. Наиболее молодые потоки андезитов на севере Варденисского нагорья имеют голоценовый возраст [11, 12]:

– андезибазальты, андезиты и риодациты (средний эоцен);

 – андезиты, туфобрекчии и туфопесчаники андезитового состава (верхний эоцен);

 дациты и риолиты (верхний эоцен–олигоцен);

– риолиты и риодациты (нижний миоцен).

Западный борт Севанской впадины образован лавовыми потоками Гегамского нагорья, сформировавшегося в верхне-миоцен-четвертичное время. Наиболее древние из известных пород имеют возраст 5.7-4.6 млн лет и представлены преимущественно трахиандезитами в западной части нагорья. Вулканическая активность конца плиоцена - начала четвертичного периода (акчагыльское время) проявилась, по-видимому, в ограниченных масштабах, на севере нагорья — в лолине р. Разлан. где ~2.5 млн лет назад сформировались платобазальты субщелочной серии. Начиная с ~0.7 млн лет в истории Гегамского нагорья были выделены четыре фазы вулканической активности с пиком активности ~0.2 млн лет назад, когда сформировалась большая часть моногенных конусов (более 100) осевой части Гегамского нагорья и вулканов Ератумберской группы. Большинство продуктов вулканической активности представлено трахиандезитами и трахиандезибазальтами [2].

ПОЗДНЕКАЙНОЗОЙСКАЯ СТРУКТУРА СЕВАНСКОЙ ВПАДИНЫ И ЕЕ ОБРАМЛЕНИЙ

В Севанском регионе, охватывающем юго-восточные отроги Памбакского хребта, Севанскую впадину, Гегамское, Варденисское и Сюникское вулканические нагорья и северную часть Зангезурского хребта, выявлено своеобразное сочетание позднекайнозойских структурных элементов, получившее название Севанской миндалевидной структуры [23, 25] (см. рис. 1).

Миндалевидная структура представляет собой связанное со сдвигами образование, которое в отличие от структур типа пулл-апарт, имеет большие размеры и развивается не между сегментами одной сдвиговой зоны, а между разными сдвиговыми зонами, в данном случае — правосдвиговыми, ограничивающими миндалевидную структуру с северо-востока (Памбак-Севан-Сюникская зона) и юго-запада (Гарнийская и Арпа-Зангезурская зоны). По данным GPS наблюдений, развитие Севанской миндалевитной структуры происходит в условиях поперечного сжатия с ориентировкой оси на север-северо-восток, характерной для всей территории Армении [15].

Севанская межгорная впадина расположена в северной части Севанской миндалевидной струк-

туры. С северо-запада на юго-восток впадину образуют Цовагюхский грабен, продолжающийся на восток озерной впадиной Малого Севана, и озерная впадина Большого Севана, продолжающегося на юго-восток в прибрежную Масрикскую низменность. Впадины Малого и Большого Севана разделены тектонической перемычкой, которая в периоды полного осушения Большого Севана в плейстоцене рассекалась антицедентным фрагментом долины р. Раздан.

Памбак-Севан-Сюникская система разломов, ограничивающая миндалевидную структуру с северо-востока, является крупнейшей четвертичной разломной зоной Армении. Вдоль нее доминируют правосдвиговые перемещения, скорость которых варьирует от 1.2 ± 0.9 мм/год до 2.4 ± 0.6 мм/год [20, 24]. Взбросовая компонента смещений переменна и является подчиненной; поднято северное крыло [23, 25] (см. рис. 1). В пределах Малого Севана Памбак-Севан-Сюникская зона разломов раздваивается на северную и южную ветви. Северная ветвь протягивается далее на восток, где от нее отделяется Акеринский разлом юго-восточного простирания (предположительно правый сдвиг), и восточнее северная ветвь затухает. Южная ветвь следует на юго-восток по дну Большого Севана и далее вдоль Сюникского нагорья. Скорость правого сдвига по южной ветви достигает 4-5 мм/год, многократно превосходя сбросовую компоненту смещений [24]. Южная ветвь и Акеринский разлом ограничены на юге Араксинской зоной левых сбросо-сдвигов [11].

На западе миндалевидная структура ограничена Гарнийским правым сдвигом с подчиненной вертикальной компонентой движений. Скорость сдвига оценена в 2 мм/год [32]. Элементом южного ограничения миндалевидной структуры является Арпа—Зангезурская зона разломов [23]. Она образована рядом сравнительно коротких разломов, местами ветвящихся и имеющих эшелонированное расположение относительно друг друга. Вдоль разломов обнаружены признаки правосдвиговых и вертикальных смещений, причем чаще поднято южное крыло.

Таким образом, Севанская миндалевидная структура ограничена разломами с доминирующей правосдвиговой компонентой смещений. При этом у разломов ЗСЗ–ВЮВ простирания она сочетается со взбросовой компонентой, а у разломов ССЗ–ЮЮВ простирания – со сбросовой компонентой.

Внутри миндалевидной структуры вылеляются локальные разломы и их сочетания, образующие структурные формы второго порядка. Движения по ним обеспечивают современные перемещения. Установлена скорость растяжения 2.4 ± 0.9 мм/год на юге Севанской впадины и

Рис. 2. Позднекайнозойская структура Севанской межгорной впадины и ее юго-западного обрамления. Обозначено (римские цифры): I – Цовагюхский грабен; II – Малый Севан (пулл-апарт); III – прогиб Большого Севана: IV – Масрикская впалина. Обозначено (арабские цифры): 1 – Норатусский сброс; 2 – Гаварский горст. Разломные зоны: ПССР – Памбак-Севан-Сюникская; НКРЗ – Норатус-Канагехская; СП – Спитаксарская. Ветви Гаварского разлома: ГРЗ-1 – северо-восточная: ГРЗ-2 – юго-западная.

Обнажения плиоцен-четвертичных отложений: Н1 – Норатус-1; Н2 – Норатус-2.

Скважины: скв. 2 – Норакерт; скв. 4 – Насосная; скв. Е – Еранос; скв. К – Карчахпюр-1.

 1.5 ± 0.8 мм/год в северной части Гегамского нагорья [20]. В пределях Малого Севана, межу двумя ветвями Памбак-Севан-Сюникской зоны разломов возникла структура пулл-апарт. Ее опускание обусловило большую глубину Малого Севана по сравнению с Большим Севаном.

Нами уточнено строение структурных форм второго порядка на юго-западном обрамлении Севанской впадины (рис. 2).

Гегамская миндалевидная структура второго порядка выявлена на Гегамском нагорье [11, 15]. С севера и востока ее ограничивает Гаварагетская зона разломов (ГРЗ-1). Наиболее выразительным элементом зоны является разлом Камо [11]. Запад-северо-западный сегмент разлома Камо характеризуется правыми взбросо-сдвиговыми смещениями, меридиональный - сбросо-сдвиговыми с опусканием западного крыла. Максимальная выявленная амплитуда поздне-четвертичного правого сдвига по меридиональному сегменту составляет ~260 м, вертикальная амплитуда изменяется от 70 до 170 м и, возможно, достигает 250 м [15].

Юго-западное ограничение Гегамской миндалевидной структуры имеет меридиональное простирание на севере и юго-восточное в более южных сегментах.

Это ограничение образовано простираюшейся на север-северо-запад центральной цепью поздне-плейстоценовых вулканических конусов Гегамского нагорья, которая на юге переходит в ряд параллельных сбросов Спитаксарской зоны с опушенными восточными крыльями. Отдельные сбросы выражены в рельефе уступами амплитудой до 15 м. Далее к югу простирание Спитаксарской зоны изменяется на юго-восточное. Разломы приобретают наклон до ∟70° на юго-запад в сторону поднятого крыла, т.е. становятся взбросами. Взбросовая компонента смещения совмещается с превосходящей ее правосдвиговой компонентой. По одному из разломов зоны амплитуда сдвига составляет 30-50 м при взбросе на 10-15 м. По другому разлому морена взброшена на 2-3 м при сдвиге врезанных в нее мелких водотоков на 16-20 м [11].

Часть миндалевидной структуры между ветвями Гаварагетского разлома образует депрессию. В ее пределах наблюдаются многочисленные мелкие сбросы (рис. 3, б).

Рис. 3. Фотографии разломов. (a) – обнажение Норатус-1 (Норатусский сброс); (б) – медице сбросы в пределах зоны активности Гарарагетского р

(б) – мелкие сбросы в пределах зоны активности Гаварагетского разлома.

Восточнее Гегамской миндалевидной структуры протягивается меридиональный Норатус—Конагехский сброс (см. рис. 3, а). Между этим сбросом и меридиональным сегментом разлома Камо Гаварагетской зоны разломов находится Гаварский горст.

СТРАТИГРАФИЯ НЕОГЕН–ЧЕТВЕРТИЧНЫХ ОСАДОЧНЫХ ОТЛОЖЕНИЙ

В нашем исследовании мы использовали стратиграфическаю шкалу Восточного Паратетиса, региональные ярусы которой имеют следующие временные интервалы:

- 13.7-7.6 млн лет (сармат);

- 7.6-7.0 млн лет (мэотис);

ГЕОТЕКТОНИКА № 4 2023

- 7.0-5.3 млн лет (понт);
- 5.3-3.2 млн лет (киммерий);
- 3.2-2.1 (1.8) млн лет (акчагыл);
- 2.1 (1.8) -0.8 млн лет (апшерон);

– 0.8–0.01 млн лет (бакинский и хазарский горизонты).

Неогеновые осадочные отложения древнее среднего-верхнего сармата в Севанской впадине неизвестны. Толщи сарматского регионального яруса накапливались в условиях залива Понто-Каспия и представлены глинами, слаболитифицированными алевролитами и песчаниками, содержащими руководящие формы сарматской малакофауны. Отложения выходят на дневную поверхность в среднем течении р. Раздан и вскрыты скв. 2 (Норакерт) и скв. 4 (Насосная), пробуренных в

прибрежной зоне оз. Севан, а также скв. Карчахпюр-1 в интервале глубин 305–410 м, скв. Еранос-1 до глубин 1170 м [9, 12] (рис. 4).

Вышележащие толщи накапливались уже в изолированных от Понто-Каспия условиях: мэотические — еще в солоноватоводном бассейне, а более молодые — в пресноводном озерном водоеме или имеют аллювиально-пролювиальный генезис.

Единственной известной областью выхода на дневную поверхность осадочных верхнемиоценовых—четвертичных отложений является полоса обнажений вдоль западного побережья Большого Севана, объединенных общим названием Норатусский разрез (или Сарыкаинская толща) и имеющих общую мощность ~300 м [8, 9].

Е.Е. Милановский [8] выделил в данной толще восемь свит.

Ю.В. Саядян [9] уточнил временны́е интервалы формирования свит и предпринял попытку корреляции отложений побережья с данными по скв. 2 (Норакерт) и скв. 4 (Насосная) (см. рис. 4).

Литологическое сходство пород разных свит, фрагментарность их выхода на дневную поверхность и практически полное отсутствие фаунистических находок затрудняют расчленение толщи.

По данным указанных исследователей, свиты I и II Норатусского разреза слагают Арцвакарскую антиклиналь (~40°19'57.47" N 45°10'43.15" Е), которая сейчас не обнажена [8, 9]. Карбонатно-терригенные морские отложения свиты I, предположительно относены к сармату. Туфогеннао-терригенная свита II, отнесенная к мэотису и понту, в разрезах скважин 2 и 4 отсутствует.

Свита III с угловым несогласием и размывом залегает на нижележащих свитах и сложена озерными диатомитами и песчано-гравийно-галечными отложениями. Южнее они замещаются риолитовыми туфами, которые были сопоставлены с туфами соответствующих интервалов разрезов скважин 2 (622–501 м) и 4 (560–396 м) [9]. Для них определен изотопный возраст 4.8 млн лет [3], что позволило отнести свиту III к нижнему плиоцену (киммерий).

В основании свиты IV озерно-аллювиальные отложения с дацитовым лавовым потоков были отнесены к верхнему плиоцену [8] (с учетом со-

Рис. 4. Геологические колонки по скв. № 2 (Норакерт) и № 4 (Насосная), восточный берег Большого Севана (по данным [9] с изменениями и дополнениями). Обозначено: ВП – Шкала Восточного Паратетиса.

^{1 —} валуны, галька, гравий; 2 — галька плоскоокатанная; 3 — суглинки; 4 — супеси; 5 — глины; 6 — туфопесчаники; 7 — туфоалевриты; 8 — туфы, игнимбриты; 9 — пеплы; 10 — риолиты, пемза; 11 — торф; 12 — диатомиты; 13 — делювий

временной границы плиоцена и плейстоцена, — к акчагылу).

В качестве свиты V были выделены андезибазальты, которые были названы манычарскими лавами [8].

Свита VI, собственно норатусская, обнаженная в уступе Норратусского сброса, рассматривалась как плейстоценовая [8] или нижнеплейстоценовая (апшеронская) [9], а к свитам VII и VIII были отнесены Уч-Таполярский лавовый покров и современные озерно-аллювиальные отложения.

Чтобы проверить указанную стратиграфическую схему и уточнить историю формирования Севанской межгорной впадины, нами были исследованы разрезы Норатус-1 и Норатус-2 на западном побережье Большого Севана. Разрез Норатус-1 находится непосредственно в стенке уступа Норатусского сброса (см. рис. 3, а). Разрез Норатус-2 расположен южнее в опущенном крыле Норатус–Конагехской сбросовой зоны (см. рис. 2).

Разрезы Норатус-1 и Норатус-2 на западном побережье Большого Севана

Норатус-1. Это обнажение ($40^{\circ}22'07.78''$ N $45^{\circ}12'22.03''$ E, h = 2000 м) представлено следующей последовательностью слоев сверху вниз [16] (рис. 5):

– пачка 1 – галечники и туфобрекчии коричневые, неслоистые, включения неокатанных обломков андезитов и дацитов, в верхней части находятся два прослоя черной пемзы мощностью 0.5–1 м, мощность пачки – до 12 м;

– пачка 2 – алеврит (серо-бежевый, горизонтально-слоистый, прослои диатомитов, мелкозернистых песчаников, реже гравия и мелкой гальки (перемытый шлак), оолитовые текстуры в алевритах), мощность пачки составляет 11 м;

 пачка 3 — туфобрекчия (серо-бежевая, состоящая из обломков преимущественно пемз и шлаков гравийной размерности с прослоями плохосортированного песчаника, единичными включения плохоокатанной гальки), мощность пачки составляет 7 м;

– пачка 4 – гравий (темно-серый, неслоистый), в кровле находится линзовидный пласт (мощностью до 0.5 м тонкозернистого тонкослоистого светлого песка с рассеянными неокатанными обломками вулканических пород), мощность пачки составляет 2 м;

– пачка 5 – песчаник (серый, слаболитифицированный, тонкослоистый, горизонтально-слоистый), тонкие прослойки перемытой пемзы и шлака гравийной размерности, алевритов, единичные включения гальки, мощность пачки составляет 10–12 м. – пачка 6 – валунно-галечный горизонт с песчано-гравийным заполнителем, галька из эффузивов преимущественно андезитового, андезибазальтового и базальтового состава, реже дацитовового или из туфов; текстура в основном неслоистая, локально – косослоистая (заполнения поперечных промоин; включения небольших линз песка, алевритов или перемытых пеплов, в верхней части – линза перемытой дацитовой пемзы, на контакте с вышележащим горизонтом – прослой пепла, мощность пачки составляет 18–20 м.

В пачках 2–6 было отобрано 95 образцов для палеомагнитного исследования. Нижние 12 образцов (нижние ~5 м пачки 6) показали обратную намагниченность, остальные — прямую намагниченность.

Были отобраны два образца пемзы из пачки 1 на K—Ar датирование, которое выполнил В.А. Лебедев (лаборатория изотопной геохимии и геохронологии ИГЕМ РАН (г. Москва, Россия). Возраст образца из верхнего прослоя — 2.30 \pm \pm 0.15 млн лет, из нижнего — 1.8 \pm 0.2 млн лет. Образец из нижнего прослоя показал высокое содержание атмосферного ⁴⁰Ar, поэтому исключен из рассмотрения.

В пачках 4–6 были отобраны образцы для спорово-пыльцевого анализа (рис. 6). Обнаружены единичные зерна пыльцы флоры неогенового возраста – Abies s.p., Pinus s.p., Picea s.p., Clavifera s.p., and Lycopodium s.p., малакофауна отсутствует.

Норатус-2. Это обнажение $(40^{\circ}19'52.08'' \text{ N} 45^{\circ}12'39.58'' \text{ E}, h = 1930 \text{ м})$ представлено следующей последовательностью слоев (сверху–вниз) (см. рис. 5, рис. 7):

 слой 1' – андезиты (манычарские лавы), мощность слоя составляет 1.5 м;

 – слой 2' – неслоистый песчаник желтый, слаболитифицированный, включения гравия, мощность слоя составляет 2.2 м;

 – пачка 3' – косослоистый песчаник желтый, слаболитифицированный, линзы гравия (эффузивы, пемза, шлак), знаки ряби, 4 прослоя плотного песчаника, мощность пачки составляет 3 м;

 – пачка 4' – чередование тонких прослоев розовых алевролитов и темно-серых мелко-зернистых песчаников, в верхней части – перемытая пемза гравийной размерности, мощность пачки составляет 1.5–1.8 м;

– пачка 5' – горизонтально-слоистый песчаник (темно-серый) с прослоем гравия, мощность пачки составляет 1.7 м;

 – пачка 6' – мелкозернистый песчаник (темносерый) массивный, интенсивные внутрислоевые деформации – сейсмиты, контакт с вышележащим слоем – эрозионный. Мощность пачки до 5 м.

109

Рис. 5. Геологические колонки обнажений Норатус-1, Норатус-2. Положение H-1, H-2 – см. рис. 2.

1 – галька, гравий; 2 – гравий; 3 – туфобрекчия; 4 – песчаник; 5 – туфопесчаник; 6 – алеврит; 7 – туфоалеврит; 8 – глина; 9 – алевролит; 10 – диатомит; 11 – андезит; 12 – пемза; 13 – пепел вулканический; 14 – сейсмиты; 15 – оолиты; 16 – спорово-пыльцевые образцы; 17 – фаунистическая находка Arvernoceros sp.; 18 – образец для К-Аг датирования; 19–20 – остаточная намагниченность: 19 – прямая, 20 – обратная, 21 – неизвестна

Отобран 21 образец для палеомагнитных исследований, все образцы показали нормальную намагниченность.

Образцы, отобранные для спорово-пыльцевого анализа, показали полное отсутствие зерен пыльцы, малакофауна также отсутствует.

В пачке 3' обнаружены костные остатки оленя. Фрагмент правого сброшенного рога с обломанными штангой и надглазничным отростком (коллекция НАН РА, ИГН № 10219/HSH 4118) принадлежал оленю среднего размерного класса (табл. 1). Рог характеризуется округлой в сечении штангой, лишенной других ответвлений на расстоянии не менее 14 см от надглазничного отростка (рис. 8, а). Первый надглазничный отросток округлый в сечении. Он расположен на расстоянии около 2.5 см от розетки и отходит вперед. Поверхность рога слабо бороздчатая.

Вероятно, к этому же таксону оленей относится другая находка — неполный слабостер-

Abies sp.

Pinus sp.

Abies sp.

Рис. 6. Зерна пыльцы обнажения Норатус-1.

Pinus sp.

Lycopodium sp.

Clavifera sp.

Рис. 7. Внутрислоевые деформации (сейсмиты), Норатус-2, осадочный слой 6'.

тый верхний зуб М3 (коллекция НАН РА, ИГН №-10220/4119). Зуб низкокоронковый с морщинистой эмалью (см. рис. 8, б, в). Основание коронки довольно вздутое. Присутствует дополнительный столбик (энтостиль); его высота составляет ~1/3 высоты коронки.

Характеристики рога позволяют отнести находку оленя из Норатуса к представителям рода *Arvernoceros*. Олени данного рода были распространены в Европе в плиоцене и раннем плейстоцене, начиная с конца русциния на протяжении почти всего виллафранка [1, 4, 5, 17–19, 22]. Параметры основания рога и уровень отхождения первого отростка указывают на определенное сходство с таковыми у представителей рода из позднего плиоцена–начало плейстоцена Западной

Рис. 8. Палеонтологические находки в разрезе Норатус-2 в осадочном слое 3'. (а) – рог оленя рода *Arvernoceros*; (б)–(в) – зуб оленя.

Таблица	1.	Промеры	неполного	правого	рога	оленя	рода	Arvernoceros	sp.	ИЗ	местонахождения	Норатус-2
(колл. НА	٩H	РА, ИГН З	№ HET-1022	20/HSH41	19							

N⁰	Измеряемый параметр	ММ
1	Диаметр розетки, латеромедиальный	57.5*
2	Диаметр розетки, переднезадний	63.6
	Окружность розетки	193*
	Угол первого разветвления, °	104
	Высота отхождения первого отростка	75
	(длина от розетки до дистальной поверхности основания дорзального отростка)	
3	Диаметр основания рога над розеткой, латеромедиальный	48*
4	Диаметр основания рога над розеткой, переднезадний	63.2
	Окружность основания рога	160*
5	Диаметр основания первого отростка, латеромедиальный	39.5
6	Диаметр основания первого отростка, переднезадний	40.3
	Окружность основания первого отростка	135*
7	Диаметр штанги над первым отростком, латерально-медиальный	40.4
8	Диаметр штанги над первым отростком, переднезадний	33.9
9	Индекс уплощения основания рога (3/4)	0.76
10	Индекс уплощения первого отростка (5/6)	0.98
11	Индекс уплощения штанги (7/8)	1.19

Примечание: * – восстановленные параметры.

Рис. 9. Параметры основания рога оленя рода *Arvernoceros*.

1-4 – А. verestschagini, ранний плейстоцен: 1 – Норатус-2 (поздний плиоцен–ранний плейстоцен); 2 – Сальчия; Ливенцовка: 3 – add; 4 – subadd.; 5-6 – А. ardei, поздний плиоцен: 5 – Этуэр; 6 – Кушкуна

и Восточной Европы (*A. ardei*), а также с территории Кавказа и Турции (рис. 9). Более поздние *Arvernoceros* обладали более массивными рогами по сравнению с позднеплиоценовыми (ранневиллафранкскими).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты и значение изучения разрезов Норатус-1 и Норатус-2

В обнажении Норатус-1 нижние 5 м характеризуются обратной намагниченностью, вышележащие 50 м — прямой намагниченностью. С учетом того, что К—Аг возраст верхнего пласта пемзы в слое 1 составляет 2.3 ± 0.15 млн лет, нижележащая нормально намагниченная часть разреза относится к палеомагнитному хрону Гаусс, а обратно намагниченная часть разреза может соответствовать субхрону Каена (3.032—3.116 млн лет). Проведенный нами анализ полученных спорово-пыльцевых данных для нижней части разреза подтверждают эту оценку (см. рис. 6). Таким образом, возраст отложений Норатус-1 относится к интервалу ~2.3—3.1 млн лет и является более древним, чем предполагалось ранее [8, 9].

Полученные нами биостратиграфические данные палеонтологической находки рога вымершего оленя рода *Arvernoceros* sp., обнаруженной в обнажении Hopatyc-2, позволяют считать наиболее вероятным принадлежность слоя 3', вмещающего костные остатки, акчагылу, т.е. верхнему плиоцену или гелазию. Поскольку слои 3'-6' разреза Норатус-2 намагничены нормально, мы полагаем возможным отнести их к верхнему плиоцену и коррелировать со слоями 2-6 разреза Норатус-1. Гравийно-галечная толща, залегающая в кровле северо-западной части обнажения Норатус-2, является вложенной и имеет плейстоценовый возраст.

Манычарские лавы, которые перекрывают часть разреза Норатус-2 и, вероятно, подстилают разрез Норатус-1 и для аналогов которых приводится датировка ~2.5 млн лет [8, 9], мы рассматриваем как разновозрастные эффузивы определенного состава и облика, но не стратиграфическое подразделение. Лавы слоя 1 разреза Норатус-2, могут иметь более молодой возраст.

Верхнеплиоцен—четвертичные отложения Норатус-1 и Норатус-2 обнажены в северной части Гаварского горста вблизи плоскости Норатусского сброса, ограничивающего Гаварский горст с востока. Одна из ветвей Норатусского сброса амплитудой 10—15 м нарушает обнажение Норатус-1 (см. рис. 3, а). Отложения Норатус-2 имеют более низкое с разницей в несколько десятков метров гипсометрическое положение по сравнению с отложениями Норатус-1, что связано с вертикальным смещением по Норатус-Канагехской зоне.

После завершения накопления озерных отложений Норатус-1 и Норатус-2, сток с Гегамского

нагорья осуществлялся на восток в Большой Севан, о чем свидетельствуют галечники в верхней северо-западной части Норатус-2. Направление стока сохранялось и после перекрытия отложений Норатус-2 лавами Гегамского нагорья. Это подтверждается наличием осушенных долин на поверхности лавовых потоков, самые крупные из которых расположены в южной части Гаварского горста.

В результате последующего поднятия Гаварского горста произошло изменение направления водостока с Гегамского нагорья. Водосток стал осуществляться на север по новообразованной долине р. Гаварагет с разгрузкой вод в юго-западную часть Малого Севана [13, 16]. Гаварский горст в северной части сложен осадочными и вулканогенно-осадочными отложениями Севана, перекрытыми андезито-базальтами и андезитами Гегамского нагорья. Слаболитифицированная осадочная толща была покрыта лавами, что сохранило ее от размыва. Однако, самая северная часть Гаварского горста, расположенная на широте Норатус-1, из-за наибольшей удаленности от вулканических центров, возможно, не была перекрыта лавовыми потоками или покров являлся маломощным и быстро подвергся размыву при поднятии горста. Максимум энергии текущей воды от перераспределенного водостока был сконцентрирован в районе западном крыле Гаварского горста, что способствовало его быстрому размыву, при этом восточная часть горста сохранилась в виде эрозионно-тектонического останца (Норатус-1).

Время начала обособления Севанской впадины и величина ее прогибания

Для установления времени начала обособления Севанской межгорной впадины мы опирались на следующие положения, соответствующие приведенным нами данным:

 в сармате Севанский регион был частью Понто-Каспийского бассейна и не отличался от него повышенной мощностью осадков; рубеж сармата—мэотиса (~7.6 млн лет) является переходным для Севанского региона от морского к континентальному режиму развития;

– в акчагыльское время (от ~3.2 до 2.1 (1.8) млн лет) прогибание впадины уже происходило, что подтверждается разрезом Норатуз-1 и 86–117метровой озерной песчано-глинистой толщей в скв. 2 и скв. 4;

 в интервале между сарматом и акчагылом (мэотис—понт) прогибание собственно Севанской впадины не зарегистрировано; вместе с тем, в разрезе Арцвакарской антиклинали присутствуют отложения мэотиса—понта с озерной малакофауной и прослоями диатомитов, которые могли накапливаться в небольших озерах подпрудного генезиса [8, 9];

киммерийские аллювиально-пролювиальные отложения с размывом залегают на сарматских глинах в скв. 4 (см. рис. 4).

На основании приведенные данных мы полагаем, что прогибание впадины происходило в плиоцен—четвертичного время. С учетом глубины положения подошвы киммерийских отложений (нижний плиоцен) в скв. 2 и скв. 4, минимальное относительное опускание Севанской впадины за это время составило от ~550 до 650 м. В центральной части впадины опускание могло быть больше 650 м.

К западу от Севанской впадины расположена крупная Ширакская межгорная впадина. Воды акчагыльской трансгрессии Каспия проникали в Ширакскую впадину, о чем свидетельствует обнаружение морских акчагыльских отложений в ее западной части [30, 33].

В Севанской впадине морские акчагыльские отложения отсутствуют, осадочные толщи данного возраста представлены песчано-глинистыми отложениями пресноводного озера. Скорее всего, Севанская впадина имела более высокое гипсометрическое положение, чем Ширакская впадина, т.е. была вовлечена в поднятие раньше.

Мощность пост-акчагыльских отложений на юге впадины Большого Севана (Масрикская низменность) составляет ~ 300 м, в центральной части впадины мощности могут иметь бо́льшие величины. Максимальная мощность пост-акчагыльских отложений в Ширакской впадине составляет ~160 м [28]. Разность мощностей свидетельствует о том, что в четвертичное время Севанская впадина испытала бо́льшее прогибание по сравнению с Ширакской впадиной.

Генезис Севанской межгорной впадины

Формирование Севанской межгорной впадины связано с развитием разломных зон, образующих Севанскую миндалевидную структуру. Внутри Севанской миндалевидной структуры идентифицированы аналогичные структуры меньшего масштаба – впадина пулл-апарт Малого Севана и Гегамская миндалевидная впадина. У большинства разломов преобладает правосдвиговая составляющая смещений, но смещения косонаправленные. Для разломов северо-запалного простирания характерна взбросовая составляющая смещений, а для разломов субмеридионального и север-северо-западного простирания - сбросовая. Таким образом, Севанская структура представляет собой крупное и сложно построенное образование типа пулл-апарт и, возможно, отражает геодинамические условия локальной транстенсии при субширотном растяжении в области региональной транспрессии при субмеридиональном сжатии.

Расположенная западнее Ширакская впадина является тектономагматической, т.е. ее прогибание происходило в результате глубинных геодинамических процессов, выраженных плиоцен–четвертичной вулканической активностью [28].

Аналогичным образом прогибание дна Севанской впадины происходило на фоне вулканической активности Гегамского и Варденисского нагорий. Это позволяет предположить, что прогибание Севанской впадины связано не только с региональным полем напряжений, выраженным разломной тектоникой, но и с магматизмом, связанным с глубинными геодинамическими процессами, т.е. впадина имеет гетерогенное происхождение.

выводы

По результатам проведенных исследований авторы пришли к следующим выводам.

1. Осадочные отложения Севанской впадины имеют среднемиоцен—четвертичный возраст. Большая часть этих отложений опущена по разломам ниже уровня дневной поверхности и только на севере западного побережья Большого Севана выведена на дневную поверхность в составе Гаварского горста (в том числе, — исследованные разрезы Норатус-1 и Норатус-2).

2. Возраст осадочных толщ разреза Норатус-1 установлен на основании палеомагнитных данных, изотопного датирования и спорово-пыльцевого анализа и составляет ~2.3-3.1 млн лет, т.е. более древний, чем предполагалось ранее. Возраст отложений обнажения Норатус-2 установлен на основании палеомагнитных данных и единичной находки фауны – рубеж плиоцена и нижнего плейстоцена. Эти отложения перекрыты нижнеплейстоценовым крупногалечным аллювием.

3. Поднятие Гаварского горста сопровождалось размывом его северо-западной части вследствие перераспределения водостока с Гегамского нагорья. Северо-восточная часть горста с обнажением Норатус-1, ограниченная Норатусским сбросом, сохранилась в виде эрозионно-тектонического останца.

4. В среднем и позднем сармате область Севанской впадины была частью морского бассейна Восточного Паратеиса. Прогибание уже изолированной впадины можно считать установленным для плиоцен-четвертичного времени. Величина прогибания составила 550—650 м. Подтвердить прогибание впадины в позднем миоцене (мэотис понт) не удалось.

5. При сравнении двух самых крупных межгорных впадин Армении, Ширакской и Севанской, установлено следующее. Акчагыльская трансгрессия Каспия достигала области Ширакской впадины, о чем свидетельствует наличие морских акчагыльских отложений на ее западном борту, но не достигала области Севанской впадины, где в акчагыльское время накапливались озерные отложения. Возможно, это связано с тектонической изоляцией и более высоким гипсометрическим положением Севанской впадины в акчагыльское время. Мощность пост-акчагыльских отложений в Севанской впадине приблизительно в два раза выше, чем в Ширакской, что свидетельствует о более интенсивном относительном ее прогибании в четвертичное время.

6. Севанская межгорная впадина, вероятно, имеет гетерогенный генезис, обусловленный как воздействием региональной разломной, в первую очередь, сдвиговой тектоники, так и глубинными преобразованиями, выраженными плиоцен—четвертичным вулканизмом.

Благодарности. Авторы благодарны Н. Орлову (ГИН РАН, Москва, Россия) за реставрацию фаунистической находки *Arvernoceros* sp. Авторы признательны рецензентам за полезные комментарии и редактору за тщательное редактирование.

Финансирование. Публикация подготовлена в рамках реализации гранта РНФ 22-17-00249 (Тесаков А.С.). Окончательная реставрация и диагностика рога оленя *Arvernoceros* sp. выполнена в рамках реализации государственного задания ЮНЦ РАН, № гр. проекта 122011900166-9 (Титов В.В.). Полевые работы поддержаны Комитетом по науке Министерства образования, науки, культуры и спорта Республики Армения в рамках научного проекта № 15Т-1Е041.

Конфликт интересов. Авторы заявляют, что не имеют конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Алексеева Л.И. Териофауна раннего антропогена Восточной Европы. Под ред. Громова В.И. – М.: Наука, 1977. 214 с. (Тр. ГИН АН СССР. Вып. 300).
- 2. Арутюнян Е.В., Лебедев В.А., Чернышев И.В., Сагателян А.К. Геохронология неоген-четвертичного вулканизма Гегамского нагорья (Малый Кавказ, Армения) // ДАН. 2007. Т. 416. № 1. С. 91–95.
- Багдасарян Г.П., Гукасян Р.Х. Геохронология магматических, метаморфических и рудных формаций Армянской ССР. – Ереван: АН АрмССР, 1985. 291 с.
- Вислобокова И.А. Ископаемые олени Евразии. Под ред. Л.Д. Татаринова – М.: Наука, 1990. 208 с. (Тр. ПИН АН СССР. Т. 240).
- 5. Вислобокова И.А., Титов В.В., Лавров А.В., Старцев Д.Б., Тарасенко К.К., Лопатин А.В. О находке большерогого оленя рода Arvernoceros в пещере Таврида в Крыму // ДАН. 2019. Т. 487. № 5. С. 596– 599.

- Джрбашян Р.Т. Палеогеновые вулканические пояса зоны закрытия океана Тетис (Малый Кавказ). – Дис. ... д.г.-м.н. – Тбилиси: КИМС. 1990. 72 с.
- Книппер А.Л. Океаническая кора в структуре альпийской складчатой области (юг Европы, западная часть Азии и Куба). – Под ред. А.В. Пейве – М.: Наука, 1975. 208 с. (Тр. ГИН АН СССР. Вып. 267).
- 8. *Милановский Е.Е.* Новые данные о строении неогеновых и четвертичных отложений бассейна оз. Севан // Изв. АН СССР. Сер. Геол. 1952. № 4. С. 110–118.
- 9. Саядян Ю.В. Новейшая геологическая история Армении. — Ереван: Гитутюн, 2009. 357 с.
- Соколов С.Д. Олистостромовые толщи и офиолитовые покровы Малого Кавказа. – М.: Наука, 1977. 94 с. (Тр. ГИН АН СССР. Вып. 296).
- Трифонов В.Г., Караханян А.С. Геодинамика и история цивилизаций. М.: Наука: 2004. 668 с. (Тр. ГИН. Вып. 585).
- Харазян Э.Х. Геология и четвертичный вулканизм Армении. – Под ред. О.А. Саркисян – Ереван: ГЕОИД, 2012. 620 с.
- Avagyan A. Estimation of the slip rates and the recurrence intervals of strong earthquakes on the fault system of Pambak–Sevan–Sunik (Armenia): Segmentation and relation with volcanic activity. PhD Thesis. Montpellier (France): Montpellier II Univ., 2001. 246 p.
- Avagyan A.V. Active faulting and related seismic hazard in the Vanadzor depression area // Proc. NAS Repю Armenia. Earth Sci. 2009. Vol. 62. P. 48–57.
- Avagyan A., Sosson M., Karakhanian A., Philip H., Rebai S., Rolland Y., Melkonyan R., Davtyan V. Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions // Geol. Soc. London. Spec. Publ. 2010. Vol. 340. P. 393–408.
- Avagyan A., Sahakyan L., Meliksetian Kh., Karakhanyan A., Lavrushin V., Atalyan T., Hovakimyan H., Avagyan S., Tozalakyan P., Shalaeva E., Chatainger Ch., Sokolov S., Sahakov A., Alaverdyan G. New evidences of Holocene tectonic and volcanic activity of the western part of Lake Sevan (Armenia) // Geol. Quarterly. 2020. Vol. 64. No. 2. P. 288–303.
- Baigusheva V., Titov V. Large deer from the Villafranchian of Eastern Europe (Sea of Azov Region): Evolution and paleoecology // Quaternary Int. 2013. Vol. 284. P. 110–122.
- Croitor R. Large-sized deer from the Early Pleistocene of Southeast Europe // Acta Palaeontologica Romaniae. 2005. Vol. 4. P. 97–104.
- Croitor R. Plio–Pleistocene deer of Western Palearctic: Taxonomy, systematics, phylogeny. – Ed. By I. Toderaş – (Elan Poligraf Publ., Chişinău: Moldova. 2018), pp. 140.
- Davtyan V., Foerflinger E., Karakhanyan A., Philip H., Avagyan A., Champollion C., Aslanyan R. Fault slip rates in Armenia by the GPS Data // Proc. Nation. Acad. Sci. Armenia. Ser.: Earth Sci. 2006. Vol. 59. No. 2. P. 3–18.
- Hässig M., Rolland Y., Sosson M., Galoyan Gh., Sahakyan L., Topuz G., Çelik Ö.F., Avagyan A., Müller C. Linking the NE Anatolian and Lesser Caucasus ophiolites: Evidence for large-scale obduction of oceanic crust and implications for the formation of the Lesser

Caucasus-Pontides Arc // Geodinamica Acta. 2013. Vol. 26. No. 3–4. P. 311–330.

- Heintz E. Les cervides Villafranchiens de France et d'Espagne // Mem. Musée d'Histoire Natur., Ser.: C. 1970. Vol. 22. No. 1. pp. 303.
- Karakhanian A., Djrbashian R., Trifonov V., Philip H., Arakelian S., Avagian A. Holocene-historical volcanism and active faults as natural risk factor for Armenia and adjacent countries // J. Volcanol. Geotherm. Res. 2002. Vol. 113. No. 1–2. P. 319–344.
- Karakhanian A.S., Trifonov V.G., Philip H., Arakelian S., Avagyan A. Active faulting and natural hazards in Armenia, the Eastern Turkey and the Northwestern Iran // Tectonophysics. 2004. Vol. 380. P. 189–220.
- 25. Karakhanyan A., Arakelyan A., Avagyan A., Baghdasaryan H., Durgaryan R., Abgaryan Ye. The seismotectonic model, seismic hazard assessment for the construction site of a New Power Unit of the Armenian NPP. – (Yerevan: Ministry of Energy of the Republic of Armenia, Vienna: IAEA, 2011. "NorAtom" Consortium Final Rep.), pp. 328.
- Philip H., Avagyan A., Karakhanian A., Ritz J.-F., Rebai S. Slip rates and recurrence intervals of strong earthquakes along the Pambak–Sevan–Sunik fault (Armenia) // Tectonophysics. 2001. Vol. 343. P. 205–232.
- Rolland Y., Galoyan G., Sosson M., Melkonyan R., Avagyan A. The Armenian ophiolite: Insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism and Upper Cretaceous obduction over the South Armenian block // Geol. Soc., London. Spec. Publ. 2010. Vol. 340. P. 353–382.
- Sahakyan L., Bosch D., Sosson M., Avagyan A., Galoyan Gh., Rolland Y., Bruguier O., Stepanyan Zh., Galland B., Vardanyan S. Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): Evidence of a subduction geodynamic environment. Tectonic Evolution of the Eastern Black Sea and Caucasus // Geol. Soc., London. Spec. Publ. 2017. Vol. 428. P. 73–98.
- Shalaeva E.A., Trivonov V.G., Lebedev V.A., Simakova A.N., Avagyan A.V., Sahakyan L.H., Arakelyan D.G., Sokolov S.A., Bachmanov D.M., Kolesnichenko A.A., Latyshev A.V., Belyaeva E.V., Lyubin V.P., Frolov P.D., Tesakov A.S., Sychevskaya E.K., Kovalyova G.V., Martirosyan M., Khisamutdinova A.I. Quaternary geology and origin of the Shirak Basin, NW Armenia // Quaternary Int. 2019. Vol. 509. P. 41–61.
- 30. Simakova A.N., Tesakov A.S., Çelik H., Frolov P.D., Shalaeva E.A., Sokolov S.A., Trikhunkov Ya.I., Trifonov V.G., Bachmanov D.M., Latyshev A.V., Ranjan P.B., Gaydlenok O.V., Syromyatnikova E.V., Kovaleva G.V., Vasilieva M.A. Caspian-type dinocysts in NE Turkey mark deep inland invasion of the Akchagylian brackishwater basin during the terminal Late Pliocene // Quaternary Int. 2021. Vol. 605–606. P. 329–348.
- Sosson M., Rolland Y., Müller C., Danelian T., Melkonyan R., Kekelia S., Adamia S., Babazadeh V., Kangarli T., Avagyan A., Galoyan G., Mosar J. Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia): New insights // Geol. Soc., London. Spec. Publ. 2010. Vol. 340. P. 329–352.
- 32. Trifonov V.G., Karakhanian A.S., Kozhurin A.I. Major active faults of the collision area between the Arabian

and the Eurasian plates, In: *Continental Collision Zone Earthquakes and Seismic Hazard Reduction.* – (Proc. Int. Conf. IASPEI/IDNDR Publ., Yerevan, Armenia, 1994). P. 56–78.

33. Trifonov V.G., Simakova A.N., Çelik H., Tesakov A.S., Shalaeva E.A., Frolov P.D., Trikhunkov Ya.I., Zelenin E.A., Aleksandrova G.N., Bachmanov D.M., Latyshev A.V., Ozherelyev D.V., Sokolov S.A., Belyaeva E.V. The Upper Pliocene–Quaternary geological history of the Shirak basin (NE Turkey and NW Armenia) and estimation of the Quaternary uplift of Lesser Caucasus // Quaternary Int. 2020. Vol. 546. P. 229–244.

Neotectonics and Geological Structure of the Sevan Intermountain Basin (Armenia): New Structural and Paleontological Data

E. A. Shalaeva^a, V. G. Trifonov^{a, *}, Ya. I. Trikhunkov^a, V. V. Titov^b, A. V. Avagyan^c,
L. H. Sahakyan^c, A. N. Simakova^a, P. D. Frolov^a, C. A. Sokolov^a,
M. A. Vasiliyeva^a, D. M. Bachmanov^a, G. M. Ovakymyan^c

^aGeological Institute, Russian Academy of Sciences, bld.7, Pyzhevsky per., 119017 Moscow, Russia

^bInstitute of Geological Sciences, National Academy of Sciences of Armenia, bld. 24A, Bagramyan Ave, 0019 Erevan, Armenia

^cSouth Scientific Center, Russian Academy of Sciences, bld. 41, Chekhov str., 344006 Rostov-on-Don, Russia

*e-mail: trifonov@ginras.ru

The article presents new data obtained as a result of field research in 2022 Sevan intermountain depression in Armenia. The emergence of the Sevan intermountain depression in the Miocene was associated with the development of the Sevan almond-shaped structure, bounded by the right-lateral Pambak–Sevan–Syunik fault zone in the northeast, the Garni zone in the south, and the Arpa–Zangezur zone in the southwest. Within the Sevan almond-shaped structure, strike-slip structures of Small Sevan (western part of Lake Sevan) and Gavar almond-shaped structure, Gavar horst, a number of faults, as well as extension zones were formed, including the southern part of Greater Sevan (eastern part of Lake Sevan) and axial zone of the Geghama Range. The development of the Sevan intermountain depression continued in the Pliocene under the influence of the uplift of the Lesser Caucasus and the Armenian Highlands. We have summarized the available data on the geological structure and geodynamics of the Sevan intermountain depression, presented the obtained data on the stratigraphy of the Pliocene–Pleistocene boundary, sedimentary accumulations did not occur in the Sevan intermountain depression.

Keywords: Armenian highlands, intermountain depression, active faults, Akchagyl transgression, lacustrine sediments, Pleistocene fauna