Subduction Style at Different Stages of Geological History of the Earth: Results of Numerical Petrological-Thermomechanical 2D Modeling
- 作者: Zakharov V.S.1, Perchuk A.L.1,2, Gerya T.V.3, Eremin M.D.1
-
隶属关系:
- Lomonosov Moscow State University
- Academician Korzhinsky Institute for Experimental Mineralogy, Russian Academy of Sciences
- Swiss Federal Institute of Technology
- 期: 编号 4 (2024)
- 页面: 3-31
- 栏目: Articles
- URL: https://journals.eco-vector.com/0016-853X/article/view/660385
- DOI: https://doi.org/10.31857/S0016853X24040018
- EDN: https://elibrary.ru/ERKYWB
- ID: 660385
如何引用文章
全文:
详细
In this article we examine the effects of impact of slab rocks eclogitization on the subduction regime under the continent. Eclogitization of rocks in high-pressure metamorphic complexes occurs only in the areas of penetration of hydrous fluid. In the absence of hydrous fluid, the kinetic delay of eclogitization preserves low-density rocks under P‒T conditions of eclogite metamorphism, delaying the weighting of a slab and reducing the efficiency of the slab-pull mechanism which contributes to the steep subduction into the deep mantle. The results of numerical petrological-thermomechanical 2D modeling of subduction under the continent in a wide range of eclogitization parameters of oceanic crust rocks (discrete eclogitization) are presented. The effects of a lower kinetic delay of eclogitization in the water-bearing basalt layer, compared to the drier underlying gabbro layer, have been tested. Based on results of 112 numerical experiments with 7 variants of eclogitization ranges (in range 400–650°C for basalt and 400–1000°C for gabbro) at different potential mantle temperatures (ΔT = 0–250°C, above modern value), and steep, flat and transitional subduction regimes were identified. The mode of steep subduction occurs under modern conditions (ΔT = 0°C) with all ranges of eclogitization. Here it is characterised by an increase in the angle of subduction of the slab as the plate descends, and above the boundary of the mantle transition zone there is a flattening or and then tucking of the slab. Subduction is accompanied by the formation of felsic and mafic volcanics and their plutonic analogues. At elevated temperatures of the mantle (ΔT≥150°С) and discrete eclogitization over a wide range, the flat subduction regime is observed with periodic detachments of its steeper frontal eclogitized part. The flat subduction regime is accompanied by significant serpentinization of the mantle wedge and episodic, scarce magmatism (from mafic to felsic), which occurs at a significant distance (≥500 km) from the trench. During the transition regime, which is also realised in models with elevated mantle temperatures, there is a characteristic change occurs from flat to steep subduction, resulting in a stepped shape of the slab. As the kinetic shift of eclogitisation increases, flat subduction develops. An increase in the thickness of the continental lithosphere from 80 km to 150 km contributes to the implementation of steep subduction, while the influence of the convergence rate (5–10 cm/year) is ambiguous.
Discrete eclogitization of thickened oceanic crust and depletion of lithospheric mantle in the oceanic plate are the main drivers of flat subduction. In modern conditions, their influence becomes insignificant due to the decrease in the thickness of the oceanic crust and the degree of depletion of the oceanic mantle lithosphere. As a result, the less frequent flat movement of slabs is determined by other factors.
作者简介
V. Zakharov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: zakharov@geol.msu.ru
Geological Faculty
俄罗斯联邦, bld. 1, Leninsky Gory, 119991 MoscowA. Perchuk
Lomonosov Moscow State University; Academician Korzhinsky Institute for Experimental Mineralogy, Russian Academy of Sciences
Email: zakharov@geol.msu.ru
Geological Faculty
俄罗斯联邦, bld. 1, Leninsky Gory, 119991 Moscow; bld. 4, Academician Hossipian Str., 142432 Chernogolovka, Moscow regionT. Gerya
Swiss Federal Institute of Technology
Email: zakharov@geol.msu.ru
Department of Earth Sciences
瑞士, bld. 5, Sonneggstrasse, 8092 ZurichM. Eremin
Lomonosov Moscow State University
Email: zakharov@geol.msu.ru
Geological Faculty
俄罗斯联邦, bld. 1, Leninsky Gory, 119991 Moscow参考
- Горяинов П.М., Иванюк Г.Ю. Самоорганизация минеральных систем. – Под ред. Н.В. Межеловского, А.Ф. Морозова ‒ М.: ГЕОС, 2001. 312 с.
- Грачев А.Ф. Первый миллиард лет развития Земли (3.8‒2.8 млрд лет): анализ осадочных и магматических формаций и геодинамика // Физика Земли. 2005. № 11. С. 8‒34.
- Диденко А.Н., Кузьмин М.И. Глубокофокусные землетрясения: пространственное распределение, возможные причины и геодинамические следствия // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 947–965.
- Добрецов Н.Л. Глобальная геодинамическая эволюция Земли и глобальные геодинамические модели // Геология и геофизика. 2010. Т. 51. № 6. С. 761–784.
- Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Геодинамическая и тепловая модели зоны субдукции // Физическая мезомеханка. 2009. Т. 12. № 1. С. 5–16.
- Захаров В.С. Самоподобие структур и процессов в литосфере по результатам фрактального и динамического анализа. ‒ Автореф. дис. … д.г.-м.н. ‒ М.: МГУ, 2014. 35 с.
- Захаров В.С., Перчук А.Л., Завьялов С.П., Синева Т.А., Геря Т.В. Суперкомпьютерное моделирование континентальной коллизии в докембрии: эффект мощности литосферы // Вестн. МГУ. Сер. 4. Геология. 2015. № 2. С. 3–9.
- Кирдяшкин А.А., Кирдяшкин А.Г. Силы, действующие на субдуцирующую океаническую плиту // Геотектоника. 2014. № 1. С. 62–76.
- Кирдяшкин А.А., Кирдяшкин А.Г. Экспериментальное и теоретическое моделирование тепловой и гидродинамической структуры субдуцирующей плиты // Геотектоника. 2013. № 3. С. 31–42.
- Коробейников С.Н., Полянский О.П., Свердлова В.Г., Бабичев А.В., Ревердатто В.В. Компьютерное моделирование поддвига и субдукции в условиях перехода габбро-эклогит в мантии // ДАН. 2008. Т. 420. № 5. С. 654‒658.
- Котелкин В.Д., Лобковский Л.И. Термохимическая теория геодинамической эволюции // ДАН. 2011. Т. 438. № 3. С. 1–4.
- Кузнецов С.П. Динамический хаос. – М.: Физматлит, 2001. 296 с.
- Кулаков И.Ю., Добрецов Н.Л., Бушенкова Н.А., Яковлев А.В. Форма слэбов в зонах субдукции под Курило-Камчатской и Алеутской дугами по данным региональной томографии // Геология и геофизика. 2011. Т. 52. № 6. С. 830—851.
- Лобковский Л.И. Тектоника деформируемых литосферных плит и модель региональной геодинамики применительно к Арктике и северо-восточной Азии // Геология и геофизика. 2016. Т. 67. № 3. С. 476–495.
- Лобковский Л.И., Рамазанов М.М. Исследование конвекции в верхней мантии, термомеханически связанной с зоной субдукции, и ее геодинамические приложения для Арктики и северо-восточной Азии // Изв. РАН. Механика жидкости и газа. 2021. № 3. С. 139–150.
- Полянский О.П., Коробейников С.Н., Свердлова В.Г., Бабичев А.В., Ревердатто В.В. Влияние реологии коры на характер субдукции плит по результатам математического моделирования // ДАН. 2010. Т. 430. № 4. С. 518–522.
- Пущаровский Ю.М. Геологическое выражение нелинейных геодинамических процессов // Геотектоника. 1998. № 1. С. 3–14.
- Пущаровский Ю.М. Линейность и нелинейность в геологии // Геотектоника. 1999. № 3. С. 42–49.
- Розен О.М., Щипанский А.А. Геодинамика раннего докембрия. Статья 1. Вулканизм и ассоциированные мантийные процессы //Стратиграфия. Геологическая корреляция. 2007. Т. 15. № 5. С. 3–25.
- Трубицын В.П. Проблемы глобальной геодинамики // Физика Земли. 2019. № 1. С. 180–198.
- Удовкина Н.Г. Эклогиты Полярного Урала: на примере южной части хр. Марун-Кеу. ‒ Под ред. А.П. Лебедева – М.: Наука, 1971. 190 c.
- Щипанский А.А. Субдукционная геодинамика в архее и формирование алмазоносных литосферных килей и ранней континентальной коры кратонов // Геотектоника. 2012. № 2. С. 42–64.
- Abbott D.H., Drury R., Smith W.H.F. Flat to steep transition in subduction style // Geology. 1994. Vol. 22. No. 10. P. 937–940. Doi: https://doi.org/10.1130/0091-7613(1994)022
- Arndt N. How did the continental crust form: No basalt, no water, no granite // Precambrian Research. 2023. Vol. 397. Art. 107196. Doi: https://doi.org/10.1016/j.precamres.2023.107196
- Austrheim H. Influence of fluid and deformation on metamorphism of the deep crust and consequences for the geodynamics of collision zones. ‒ In: When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. ‒ Ed. by B.R. Hacker, J.G. Liou, (Springer-Science+Business Media, Dordrecht, Netherlands. 1998). P. 297–323.
- Baitsch-Ghirardello B., Gerya T.V., Burg J.-P. Geodynamic regimes of intra-oceanic subduction: Implications forearc extension vs. shortening processes // Gondwana Research. 2014. Vol. 25. P. 546–560.
- Bittner D., Schmeling H. Numerical modeling of melting processes and induced diapirism in the lower crust // Geoph. J. Int. 1995. Vol. 123. P. 59–70.
- Brown M., Johnson T., Gardiner N.J. Plate tectonics and the Archean Earth // Ann. Rev. Earth Planet. Sci. 2020. Vol. 48. P. 291–320.
- Burg J.-P., Gerya T.V. The role of viscous heating in Barrovian metamorphism of collisional orogens: Thermomechanical models and application to the Lepontine dome in the Central Alps // J. Metam. Geol. 2005. Vol. 23. P. 75–95.
- Cawood P.A., Hawkesworth C.J., Dhuime B. The continental record and the generation of continental crust // Geol. Soc. Am. Bull. 2013. Vol. 125. P. 14–32. doi: 10.1130/B30722.1
- Chelle-Michou C., McCarthy A., Moyen J.-F., Cawood P.A., Capitanio F.A. Make subductions diverse again // Earth-Sci. Rev. 2022. Vol. 226. Art. 103966. Doi: https://doi.org/10.1016/j.earscirev.2022.103966
- Clauser C., Huenges E. Thermal conductivity of rocks and minerals. ‒ In: Rock Physics and Phase Relations. ‒ Ed. by T.J. Ahrens (Washington, AGU, USA, 1995). P. 105–126.
- Connolly J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation // Earth Planet. Sci. Lett. 2005. Vol. 236. P. 524–541.
- Crameri F., Schmeling H., Golabek G.J., Duretz T., Orendt R., Buiter S.J.H., May D.A., Kaus B.J.P., Gerya T.V., Tackley P.J. A comparison of numerical surface topography calculations in geodynamic modelling: An evaluation of the “sticky air” method // Geoph. J. Int. 2012. Vol. 189. P. 38–54.
- Davies J.H. The role of hydraulic fractures in generating intermediate depth earthquakes and subduction zone magmatism // Nature. 1999. Vol. 398. P. 142–145.
- Gao S., Luo T.-C., Zhang B.-R., Zhang H.-F., Han Y.-W., Hu Y.-K., Zhao Z.-D. Chemical composition of the continental crust as revealed by studies in east China // Geochim. Cosmochim. Acta. 1998. Vol. 62. P. 1959–1975.
- Gerya T., Stern R., Baes M., Sobolev S.V., Whattam S.A. Plate tectonics on the Earth triggered by plume-induced subduction initiation // Nature. 2015. Vol. 527. P. 221–225. https://doi.org/10.1038/nature15752
- Gerya T.V. Numerical modeling of subduction: State of the art and future directions // Geosphere 2022. Vol. 18. No. 2. P. 503–561. Doi: https://doi.org/10.1130/GES02416.1
- Gerya T.V. Precambrian geodynamics: Concepts and models // Gondwana Research. 2014. Vol. 25. P. 442–463. Doi: https://doi.org/10.1016/j.gr.2012.11.008
- Gerya T.V., Connolly J.A.D., Yuen D.A., Gorczyk W., Capel A.M. Seismic implications of mantle wedge plumes // Phys. Earth Planet. Interiors. 2006. Vol. 156. P. 59–74. Doi: https://doi.org/10.1016/j.pepi.2006.02.005
- Gerya T.V., Fossati D., Cantieni C., Seward D. Dynamic effects of aseismic ridge subduction: Numerical modelling // Eur. J. Mineral. 2009. Vol. 21. P. 649‒661. Doi: https://doi.org/10.1127/0935-1221/2009/0021-1931
- Gerya T.V., Meilick F.I. Geodynamic regimes of subduction under an active margin: Effects of rheological weakening by fluids and melts // J. Metamorph. Geol. 2011. Vol. 29. P. 7–31. Doi: https://doi.org/10.1111/j.1525-1314.2010.00904.x
- Gerya T.V., Yuen D.A. Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties // Phys. Earth Planet. Int. 2003. Vol. 140. P. 293–318. https://doi.org/10.1016/j.pepi.2003.09.006
- Goes S., Agrusta R., van Hunen J., Garel F. Subduction-transition zone interaction: A review // Geosphere. 2017. Vol. 13. No. 3. P. 644–664. Doi: https://doi.org/10.1130/GES01476.1
- Gutscher M.A., Maury R., Eissen J.P., Bourdon E. Can slab melting be caused by flat subduction? // Geology. 2000. Vol. 28. P. 535–538. Doi: https://doi.org/10.1130/0091-7613(2000)28<535:CSMBCB>2.0.CO;2
- Hacker B.R. Eclogite formation and the rheology, buoyancy, seismicity, and H2O content of oceanic crust. ‒ Ed. by G.E. Bebout, D.W. Scholl, S.H. Kirby, J.P. Platt, (UGU, Washington, DC, USA. Geophys. Monogr. Ser. 1996. Vol. 96). P. 337–346.
- Hermann J., Spandler C., Hack A., Korsakov A.V. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: Implications for element transfer in subduction zones // Lithos. 2006. Vol. 92. No. 3–4. P. 399–417. Doi: https://doi.org/10.1016/j.lithos.2006.03.055
- Herzberg C., Asimow P.D., Arndt N., Niu Y., Lesher C.M., Fitton J.G., Cheadle M.J., Saunders A.D. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites // Geochem. Geophys. Geosyst. 2007. Vol. 8. Art. Q02006. doi: 10.1029/2006GC001390
- Herzberg C., Condie K., Korenaga J. Thermal history of the Earth and its petrological expression // Earth Planet. Sci. Lett. 2010. Vol. 292. P. 79‒88.
- Huang B., Johnson T.E., Wilde S.A., Polat A., Fu D., Kusky T. Coexisting divergent and convergent plate boundary assemblages indicate plate tectonics in the Neoarchean // Nature Communications. 2022. Vol. 13. Art. 6450. Doi: https://doi.org/10.1038/s41467-022-34214-8
- Ito E., Akaogi M., Topor L., Navrotsky A. Negative pressure-temperature slopes for reactions forming MgSiO3 perovskite from calorimetry // Science. 1990. Vol. 249. P. 1275–1278.
- Ito K., Kennedy G.C. An experimental study of the basalt-garnet granulite-eclogite transition. ‒ In: The Structure and Physical Properties of the Earth’s Crust. ‒ Ed. by J.G. Heacock, (AGU, Washington, DC, USA. Geoph. Monogr. Ser. 1971. Vol. 14). P. 303–314.
- Katsura T., Ito E. The system Mg2SiO4–Fe2SiO4 at high pressures and temperatures: Precise determination of stabilities of olivine, modified spinel and spinel // J. Geoph. Res. 1989. Vol. 94. P. 663–670.
- Katz R.F., Spiegelman M., Langmuir C.H. A new parameterization of hydrous mantle melting // Geochem. Geophys. Geosyst. 2003. Vol. 4. No. 9. Art. 1073. Doi: https://doi.org/10.1029/2002GC000433
- Korenaga J. Initiation and evolution of plate tectonics on Earth: theories and observations // Ann. Rev. Earth Planet. Sci. 2013. Vol. 41. P. 117–151.
- Labrosse S., Jaupart C. Thermal evolution of the Earth: Secular changes and fluctuations of plate characteristics // Earth Planet. Sci. Let. 2007. Vol. 260. No. 3–4. P. 260–465. doi: 10.1016/j.epsl.2007.05.046
- Li Z.-H., Gerya T., Connolly J.A.D. Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling // Earth-Sci. Rev. 2019. Vol. 196. Art. 102874. Doi: https://doi.org/10.1016/j.earscirev.2019.05.018
- Lobkovsky L.I., Gabsatarov Y.V., Alekseev D.A., Vladimirova I.S., Ramazanov M.M., Kotelkin V.D. Geodynamic model of the interaction of the subduction zone with the continental lithosphere in the area of transition between the Pacific Ocean and East Asia // Geodynam. Tectonophys. 2022. Vol. 13. No. 5. Art. 0675. doi: 10.5800/GT-2022-13-5-0675
- Lobkovsky L.I., Ramazanov M.M., Kotelkin V.D. Convection related to subduction zone and application of the model to investigate the Cretaceous‒Cenozoic geodynamics of Central East Asia and Arctic // Geodynam. Tectonophys. 2021. Vol. 12. No. 3. P. 455–470. doi: 10.5800/GT-2021-12-3-0533
- Maierova P., Schulmann K., Gerya T. Relamination styles in collisional orogens // Tectonics. 2018. Vol. 37. P. 224–250.
- Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: Relationships and some implications for crustal evolution // Lithos. 2005. Vol. 79. P. 1–24.
- Mishin Y.A., Gerya T.V., Burg J.P., Connolly J.A.D. Dynamics of double subduction: Numerical modeling // Phys. Earth Planet. Int. 2008. Vol. 171. P. 280–295.
- Moyen J.-F., Martin H. Forty years of TTG research // Lithos. 2012. Vol. 148. P. 312–336.
- Palin R., Santosh M. Plate tectonics: What, where, why, and when? // Gondwana Research. 2021. Vol. 100. P. 3–24.
- Palin R.M., Santosh M., Cao W., Li S.-S., Hernández-Uribe D., Parsonsa A. Secular change and the onset of plate tectonics on Earth // Earth-Sci. Rev. 2020. Vol. 207. Art. 103172. Doi: https://doi.org/10.1016/j.earscirev.2020.103172
- Palin R.M., White R.W., Green E.C.R. Partial melting of metabasic rocks and the generation of tonalitic–trondhjemitic–granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling // Precambrian Research. 2016. Vol. 287. P. 73–90.
- Parada M., López-Escobar L., Oliveros V., Fuentes F., Morata D., Calderón M., Aguirre L., Feraud G., Espinoza F., Moreno H., Figueroa O., Muñoz J., Troncosa R., Stern C.R. Andean magmatism. ‒ In: The Geology of Chile. ‒ Ed. by T. Moreno, W. Gibbons, (Geol. Soc. London, UK. 2007). P. 149–180. Doi: https://doi.org/10.1144/GOCH.4
- Peacock S.M. Serpentinization and infiltration metasomatism in the Trinity peridotite, Klamath province, northern California: implications for subduction zones // Contrib. Miner. Petrol. 1987. Vol. 95. P. 55–70.
- Perchuk A.L., Zakharov V.S., Gerya T., Brown M. Hotter mantle but colder subduction in the Precambrian: What are the implications? // Precambrian Research 2019. Vol. 330. P. 20–34. Doi: https://doi.org/10.1016/j.precamres.2019.04.023
- Perchuk A.L., Gerya T.V., Zakharov V.S. Griffin W.L. Building cratonic keels in Precambrian plate tectonics // Nature. 2020. Vol. 586. P. 395–401. Doi: https://doi.org/10.1038/s41586-020-2806-7
- Perchuk A.L., Gerya T.V., Zakharov V.S. Griffin W.L. Depletion of the upper mantle by convergent tectonics in the Early Earth // Sci. Rep. 2021. Vol. 11. Art. 21489. Doi: https://doi.org/10.1038/s41598-021-00837-y
- Perchuk A.L., Safonov O.G., Smit C.A., van Reenen D.D., Zakharov V.S., Gerya T.V. Precambrian ultra-hot orogenic factory: Making and reworking of continental crust // Tectonophysics. 2018. Vol. 746. P. 572–586. Doi: https://doi.org/10.1016/j.tecto.2016.11.041
- Perchuk A.L., Zakharov V.S., Gerya T.V., Griffin W.L. Flat subduction in the Early Earth: The key role of discrete eclogitization kinetics // Gondwana Research 2023 Vol. 119. P. 186–203. Doi: https://doi.org/10.1016/j.gr.2023.03.015
- Petersen R.I., Stegman D.R., Tackley P.J. The subduction dichotomy of strong plates and weak slabs // Solid Earth. 2017. Vol. 8. P. 339–350.
- Poli S. The amphibolite-eclogite transformation; an experimental study on basalt // Am. J. Sci. 1993. Vol. 293(10). P. 1061–1107. Doi: https://doi.org/10.2475/ajs.293.10.1061
- Ranalli G. Rheology of the Earth. – (Chapman & Hall, London. UK. 1995), pp. 413.
- Rozel A., Golabek G.J., Jain C., Tackley P.J., Gerya T. Continental crust formation on early Earth controlled by intrusive magmatism // Nature. 2017. Vol. 545. P. 332–335. Doi: https://doi.org/10.1038/nature22042
- Rudnick R.L., Fountain D.M. Nature and composition of the continental crust: A lower crustal perspective // Rev. Geophys. 1995. Vol. 33. P. 267–309.
- Rudnick R.L., Gao S. Composition of the continental crust // Treatise on Geochem. 2003. Vol. 3. P. 1–64.
- Santosh M., Omori S. CO2 flushing: a plate tectonic perspective // Gondwana Research. 2008. Vol. 13. P. 86‒102.
- Schellart W.P. Control of subduction zone age and size on flat slab subduction // Front. Earth Sci. 2020. Vol. 26. No. 8. doi: 10.3389/feart.2020.00026
- Schmidt M., Poli S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation // Earth and Planet. Sci. Let. 1998. Vol. 163. P. 361–379.
- Schmidt M.W., Poli S. Devolatilization During Subduction // Treatise on Geochem. 2014. P. 669–701.
- Sizova E., Gerya T., Brown M., Perchuk L.L. Subduction styles in the Precambrian: insight from numerical experiments // Lithos. 2010. Vol. 116. P. 209–229.
- Smithies R.H., Champion D.C., Cassidy K.F. Formation of Earth’s early Archaean continental crust // Precambrian Research. 2003. Vol. 127 P. 89–101.
- Stern R.J. Subduction zones // Rev. Geophys. 2002. Vol. 40. No. 4. Art. 1012. doi: 10.1029/2001RG000108
- Tackley P.J., Nakagawa T., Hernlund J.W. Influence of the post-perovskite transition on thermal and thermo chemical mantle convection. ‒ In: Post-Perovskite: The Last Phase Transition. ‒ Ed. by K. Hirose, (AGU, Washington, USA. Geophys. Monogr. Ser. 2007. Vol. 174). P. 229–247.
- Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution. – (Blackwell, Oxford, UK. 1985), pp. 312.
- Turcotte D.L. Fractals and Chaos in Geology and Geophysics. – (Cambridge Univ. Press, Cambridge, UK. 1997), pp. 398.
- Turcotte D.L., Schubert G. Geodynamics. – (Cambridge Univ. Press, Cambridge, UK. 2014), pp. 472.
- van Hunen J., Moyen J.F. Archean subduction: Fact or fiction? // Ann. Rev. Earth Planet. Sci. 2012. Vol. 40. Art. 195e219.
- van Hunen J., van den Berg A.P. Plate tectonics on the early Earth: Limitations imposed by strength and buoyancy of subducted lithosphere // Lithos. 2008. Vol. 103. P. 217–235.
- van Hunen J., van den Berg A.P., Vlaar N.J. Various mechanisms to induce present-day shallow flat subduction and implications for the younger earth: A numerical parameter study // Phys. Earth Planet. Interiors. 2004. Vol. 146. P. 179–194.
- Vlaar N.J., Wortel M.J.R. Lithospheric aging, instability and subduction // Tectonophys. 1976. Vol. 32. P. 331–351.
- Vogt K., Gerya T.V., Castro A. Crustal growth at active continental margins: Numerical modelling // Phys. Earth Planet. Interiors. 2012. Vol. 192. P. 1–20.
- Wedepohl K.H. The composition of the continental crust // Geochim. Cosmochim. Acta. 1995. Vol. 50. P. 2267–2279.
- Wei C.J., Duan Z.Z. Phase relations in metabasic rocks: constraints from the results of experiments, phase modelling and ACF analysis // Geol. Soc. London, Spec. Publ. 2018. Vol. 474. P. 25–45. Doi: https://doi.org/10.1144/SP474.10
- Wu C., Wang G., Zhou Z., Haproff P. J., Zuza A. V., Liu W. Paleoproterozoic plate tectonics recorded in the Northern Margin orogen, North China craton // Geochem. Geophys. Geosyst. 2022. Vol. 23. Art. e2022GC010662. Doi: https://doi.org/10.1029/2022GC010662
- Zheng Y. Plate tectonics in the Archean: Observations versus interpretations // Sci. China Earth Sci. 2024. Vol. 67. P. 1–30. Doi: https://doi.org/10.1007/s11430-023-1210-5
- Space image, https://www.gebco.net/data_and_products/printable_maps/documents/gebco_2022_a2_2n.pdf (Accessed January, 2024).
补充文件
