Modeling of Stress-Strain State and Coseismic Effects of Epicentral Zone of Tangshan Earthquake (Southeastern China)
- 作者: Morozov V.N.1, Manevich A.I.1,2, Losev I.V.1
-
隶属关系:
- Geophysical Center of Russian Academy Sciences
- University of science and technology (MISIS)
- 期: 编号 4 (2024)
- 页面: 32-48
- 栏目: Articles
- URL: https://journals.eco-vector.com/0016-853X/article/view/660388
- DOI: https://doi.org/10.31857/S0016853X24040028
- EDN: https://elibrary.ru/ERKPGB
- ID: 660388
如何引用文章
全文:
详细
The paper presents the results of numerical modeling and analysis of stress-strain state of the epicentral zone of the strong earthquake in the north-east of China, which occurred on 27.07.1976 with Ms=7.8. Many present-day works continue to discuss the reasons for such a strong earthquake, which occurred in tectonic conditions ‒ far from interplate boundaries, inside the Tangshan tectonic block bounded by tectonic faults. However, published new geodynamic, seismological, geophysical and geodetic data provide confidence in the determining role of fault tectonics in this region.
Based on the analysis of the results of modeling of the stress-strain state preceding the Tangshan earthquake with coseismic geophysical and geodetic data, we propose a model of earthquake rupture formation. The results of comparison of independent estimates of shear stresses with the results of modeling in the sources of strong earthquakes suggest that the areas of tectonic stress concentration are localized in the interfault rupture of the Tangshan fault, reaching maximum values at the termination of fault ruptures σi ≈ 50 MPa и τxy ≈ 20 MPa. The hypocenter of the main seismic event (taking into account the error of coordinate determination) is located in the region of stress intensity 35‒50 MPa and the ratio of main stresses σxx/σyy ≈ 8–10. It should be expected that these zones are the starting site of rupture, the extent of which depends on the amount of accumulated elastic potential energy of tectonic stresses in the adjacent region. For the Tangshan earthquake, this area corresponds to a high intensity of stresses exceeding 30 MPa in a band with a length more than 30 km and a width reaching 4.5 km.
作者简介
V. Morozov
Geophysical Center of Russian Academy Sciences
Email: ai.manevich@yandex.ru
俄罗斯联邦, bld. 3, Molodezhnaya st., 119296 Moscow
A. Manevich
Geophysical Center of Russian Academy Sciences; University of science and technology (MISIS)
编辑信件的主要联系方式.
Email: ai.manevich@yandex.ru
俄罗斯联邦, bld. 3, Molodezhnaya st., 119296 Moscow; bld. 4, Leninsky pr., 119049 Moscow
I. Losev
Geophysical Center of Russian Academy Sciences
Email: ai.manevich@yandex.ru
俄罗斯联邦, bld. 3, Molodezhnaya st., 119296 Moscow
参考
- Гзовский М.В. Основы тектонофизики. – М.: Наука, 1975. 535 с.
- Динник А.Н. Устойчивость арок. – М.: ОГИЗ ГОСТЕХИЗДАТ, 1946. 127 с.
- Добровольский И.П. Математическая теория подготовки и прогноза тектонического землетрясения. – М.: Физматлит, 2009. 240 с.
- Есиков Н.П. Современные движения земной поверхности с позиции теории деформации. – Новосибирск: Наука, СО РАН. 1991. 226 с.
- Забродин В.Ю., Рыбас О.В., Гильманова Г.З. Разломная тектоника материковой части Дальнего востока России. – Владивосток: Дальнаука, 2015. 132 с.
- Зубков А.В. Закон формирования природного напряженного состояния земной коры // Литосфера. 2016. № 5. С. 146‒151.
- Кочарян Г.Г. Геомеханика разломов. – М.: ГЕОС, 2016. 424 с.
- Маневич А.И., Шевчук Р.В., Лосев И.В., Кафтан В.И., Урманов Д.И., Шакиров А.И. Определение и визуализация параметров движений и деформаций земной поверхности по данным ГНСС-наблюдений в среде Python 3 и QGIS 3 // Геодезия и картография. 2023. № 12. С. 17–26. Doi: https://doi.org/10.22389/0016-7126-2023-1002-12-17-26
- Морозов В.Н., Кафтан В.И., Татаринов В.Н., Колесников И.Ю., Маневич А.И., Мельников А.Ю. Численное моделирование напряженно-деформированного состояния и результаты GPS-мониторинга эпицентральной зоны землетрясения 24 августа 2014 (г. Напа, шт. Калифорния, США) // Геотектоника. 2018. № 5. С. 90–102. Doi: https://doi.org/10.1134/S0016853X18040069
- Морозов В.Н., Маневич А.И., Татаринов В.Н. Ретроспективный прогноз места и интенсивности двух сильных коровых землетрясений в Иране и Индии // Вулканология и сейсмология. 2023. № 3. С. 69–78. Doi: https://doi.org/10.31857/S020303062370013X
- Морозов В.Н., Татаринов В.Н., Колесников И.Ю., Маневич А.И. Моделирование напряженно-деформированного состояния эпицентральной зоны сильного землетрясения в Иране (26 декабря 2003 г. M w = 6.6) // Физика Земли. 2018. № 4. С. 68‒78. Doi: https://doi.org/10.1134/S0002333718040087
- Ризниченко Ю.В. Размеры очага корового землетрясения и сейсмический момент // Исследования по физике землетрясений. – М.: Наука. 1976. С. 9–27.
- Селин К.В. Изменение первоначальных горизонтальных напряжений массива с глубиной в различных регионах мира // Горный информационно-аналитический бюллетень. 2008. № 10. С. 297‒301.
- Шерман С.И., Семинский С.А., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере: зоны сдвига. – Новосибирск: Наука, 1992. 258 с.
- Allen M.B., Macdonald D.I.M., Zhao X., Vincent S.J., Brouet-Menzies C. Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China // Marine and Petrol. Geol. 1997. Vol. 14. P. 951–972.
- Bouasla S. The 1976 China, Tangshan earthquake Mw=7.8 mechanism in retrospect // J. Appl. Sci. 2009. Vol. 9. Is. 15. P. 2714–2724. Doi: https://doi.org/10.3923/jas.2009.2714.2724
- Butler R.S., Gordon S., Kanamori H. The July 27, 1976 Tangshan, China earthquake – A complex sequence of intraplate events // Bull. Seismol. Soc. Am. 1979. Vol. 69. No. 1. P. 207–220. Doi: https://doi.org/10.1785/BSSA0690010207
- Chen P.-S., Xiao L., Bai T.-X., Wang X.-L. The environments shear stress field for the 1976 Tangshan earthquake sequence // ACTA Seismologica Sinica. 1994. Vol. 7. Vol. 4. P. 549–557. Doi: https://doi.org/10.1007/BF02650740
- Feng X., Ma J., Zhou Y., England P., Parsons B., Rizza M.A., Walker R.T. Geomorphology and paleoseismology of the Weinan fault, Shaanxi, Central China, and the source of the 1556 Huaxian earthquake // J. Geophys. Res.: Solid Earth. 2020. Vol. 125. No. 12. Doi: https://doi.org/10.1029/2019JB017848
- Grown E.T., Hoek E. Trends in relations between measured in situ stresses with depth // Int. J. of Rock Mechanics and Mining Sci. 1978. Vol. 15. Is. 4. P. 211‒215.
- Guo H., Jiang W., Xie H. Multiple faulting events revealed by trench analysis of the seismogenic structure of the 1976 Ms=7.1 Luanxian earthquake, Tangshan Region, China // J. Asian Earth Sci. 2017. Vol. 147. P. 424–438. Doi: https://doi.org/10.1016/j.jseaes.2017.06.004
- Guo H., Zhao J. The surface rupture zone and paleoseismic evidence on the seismogenic fault of the 1976 M=7.8 Tangshan earthquake, China // Geomorphology. 2019. Vol. 327. P. 297–306. Doi: https://doi.org/10.1016/j.geomorph.2018.11.006
- Li J.-H., Hao S.-J., Hu Y.-T. Tectonic setting of the seismogeny of the 1976 Tangshan, China M=7.8 earthquake // ACTA Seismologica Sinica. 1998. Vol. 11. No. 5. P. 539–546. Doi: https://doi.org/10.1007/s11589-998-0068-9
- Li Y., Du J., Wang X., Zhou X., Xie C., Cui Y. Spatial variations of soil gas geochemistry in the Tangshan area of northern China // Article in Terrestrial Atmospheric and Oceanic Sciences. 2013. Vol. 24. No. 3. P. 323–332. Doi: https://doi.org/10.3319/TAO.2012.11.26.01(TT)
- Li Z., Ni S., Roecker S., Bao F., Wei X., Yuen D. Seismic imaging of source region in the 1976 Ms=7.8 Tangshan earthquake sequence and its implications for the seismogenesis of intraplate earthquakes // Bull. Seism. Soc. Am. 2018. Vol. 108. No. 3A. P. 1302–1313. Doi: https://doi.org/10.1785/0120170389
- Liu K., Li Y., Nan Y., Liu B., Wang W. Detailed shallow structure of the seismogenic fault of the 1976 Ms=7.8 Tangshan earthquake, China // Frontiers in Earth Sci. 2022. Vol. 10. Doi: https://doi.org/10.3389/feart.2022.946972
- Liu Y., Wang J., Chen J.-H., Li S., Guo B. Seismogenic tectonic environment of 1976 Great Tangshan earthquake: results from dense seismic array observations // Earth Sci. Frontiers. 2007. Vol. 14. Is. 6. P. 205–213. Doi: https://doi.org/10.1016/S1872-5791(08)60012-3
- Liu Y., Zhuang J., Jiang C. Background seismicity before and after the 1976 Ms=7.8 Tangshan earthquake: Is its aftershock sequence still continuing? // Seism. Res. Lett. 2021. Vol. 92. No. 2A. P. 877–885. Doi: https://doi.org/10.1785/0220200179
- Mearns E., Sornette D. A transfer fault complex to explain the geodynamics and faulting mechanisms of the 1976 Ms=7.8 Tangshan earthquake China // J. Asian Earth Sci. 2021. Vol. 213. Doi: https://doi.org/10.1016/j.jseaes.2021.104738
- Qi J., Yang Q. Cenozoic structural deformation and dynamic processes of the Bohai Bay basin province, China // Marine and Petrol. Geol. 2010. Vol. 27. P. 757–771. Doi: https://doi.org/10.1016/j.marpetgeo.2009.08.012
- Qu W., Gao Y., Zhang Q., Hao M., Wang Q. Present crustal deformation and stress-strain fields of North China revealed from GPS observations and finite element modelling // J. Asian Earth Sci. 2019. Vol. 183. Doi: https://doi.org/10.1016/j.jseaes.2019.103959
- Ruihao L., Zhaozhu F. Local gravity variations before and after the Tangshan earthquake (M = 7.8) and the dilatation process // Tectonophysics. 1983. Vol. 97. Is. 1–4. P. 159–169. Doi: https://doi.org/10.1016/0040-1951(83)90143-9
- Tian X., Gong J., Zhai Z. Natural disasters and human capital accumulation: Evidence from the 1976 Tangshan earthquake // Economics of Education Rev. 2022. Vol. 90. Doi: https://doi.org/10.1016/j.econedurev.2022.102304
- Tian Z.-Y., Han P., Xu K.-D. The Mesozoic-Cenozoic East China rift system // Tectonophysics. 1992. Vol. 208. P. 341–363. Doi: https://doi.org/10.1016/0040-1951(92)90354-9
- Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement // Bull. Seism. Soc. Am. 1994. Vol. 84. No. 4. P. 975–1002. Doi: https://doi.org/10.1785/BSSA0840040974
- Yong-Ge W., Yong-Kui W., Zhi-Tong J., Shu-Zhong S., Zhao-Cai L., Fan Y., Tian F. Rupture distribution of the 1976 Tangshan earthquake sequence inverted from geodetic data // Chin. J. Geophys. 2017. Vol. 60. No. 6. P. 583–601. Doi: https://doi.org/10.1002/cjg2.30070
- Yu F., Koyi H. Cenozoic tectonic model of the Bohai Bay Basin in China // Geol. Magazine. 2016. Vol. 153. Is. 5–6. P. 866–886. Doi: https://doi.org/10.1017/S0016756816000492
- Zhang G., Ji Y., Guo H., Hu X. Complex fault geometry of the 1976 Ms=7.8 Tangshan earthquake source region in North China // Tectonophysics. 2022. Vol. 845. Doi: https://doi.org/10.1016/j.tecto.2022.229642
补充文件
