Structural Paragenesis and Geological Conditions of Formation of the Frontal Allochthon of the Southern Cis-Urals

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents the results of structural and geological study of the Ik–Sakmara segment of the western zone of frontal deformations of the Urals. Within this tectonic zone, at the late stages of the evolution of the Hercynian structure of the Urals, a thick complex of Upper Paleozoic sedimentary rocks composing the eastern slope of the Pre-Ural Trough was deformed. The studies carried out, including field study of structures, detailed structural mapping and construction of principal cross-sections, made it possible to clarify the ideas about the tectonic structure of the Southern Urals in this region – the most controversial in terms of structure. Based on the results of the work, multi-rank tectonic structures were demonstrated on the compiled maps and in cross-sections, the morphological interconnection of which makes it possible to combine them into a single folded-fault paragenesis formed in the regional horizontal compression. The formation of tectonic structures began immediately after the deposition of the evaporite strata of the Kungur stage, accompanied by an orogenic rise during the deformation area up to 6–8 km. Calculations and graphical constructions performed in accordance with the basic provisions of the methods of structural reconstructions of folds-and-thrust belts and the concept of balanced sections made it possible to substantiate the allochthon structure of the zone of frontal deformations, to estimate the thickness of the allochthonous plate (7–8 km), to determine the amplitudes of displacement (decreasing from east to west) along the subhorizontal detachment, as well as the value of the horizontal deformation of layers in the allochthon (up to 40%).

Full Text

Restricted Access

About the authors

E. S. Przhiyalgovskii

Geological Institute of Russian Academy of Sciences

Author for correspondence.
Email: prz4@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

E. V. Lavrushina

Geological Institute of Russian Academy of Sciences

Email: prz4@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

A. B. Kuznetsov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences (IPGG RAS)

Email: prz4@yandex.ru
Russian Federation, bld. 2, Makarov emb., 199034 Saint Petersburg

N. D. Zhuravleva

Geological Institute of Russian Academy of Sciences

Email: prz4@yandex.ru
Russian Federation, bld. 7, Pyzhevsky per., 119017 Moscow

References

  1. Беляева Н.В., Юдин В.В., Корзун А.Л. Глубинное строение западного склона Урала в районе Сочьинской антиклинали (по данным бурения параметрической скважины 1–Верхняя Сочь). — Сыктывкар: Коми НЦ УрО РАН, 1997. 78 с.
  2. Волож Ю А., Антипов М.П., Быкадоров В.А., Хераскова Т.Н., Парасына В.С., Днистрянский В.И., Каширских М.Ф., Офман И.П., Иванова И.А. Оренбургский тектонический узел: геологическое строение и нефтегазоносность. – Под ред. Ю.А. Воложа, В.С., Парасыны – М.: Научный мир, 2013. 291 с.
  3. Глубинное строение и геодинамика Южного Урала (проект «Уралсейс»). — Под ред. А.Ф. Морозова — Тверь: ГЕРС, 2001. 286 с.
  4. Горожанин.В.М., Горожанина Е.Н. Особенности строения зоны Ташлинского взбросо-надвига на Южном Урале // Геологический сборник. 2015. №12. С. 69–78.
  5. Горожанин В.М., Горожанина Е.Н. Карбонатные брекчии в нижнепермских отложениях Южного Урала как маркеры сейсмических событий. – В сб.: Геология, полезные ископаемые и проблемы геоэкологии Башкортостана, Урала и сопредельных территорий. – Мат-лы 14-й Межрегиональная науч.-практич. конф. 2022 г. – М.: Перо, 2022 С. 47‒50.
  6. Исмагилов Р.А. Перспективная зона нефтегазоносности под аллохтонами Южного Урала // Георесурсы. 2014. Т.58. №3. С. 17–21. Doi: http://dx.doi.org/10.18599/grs.58.3.3
  7. Казанцев Ю.В. Структурная геология Предуральского прогиба. — Под ред. М.А. Камалетдинова – М.: Наука, 1984. 234 с.
  8. Камалетдинов М.А. Покровные структуры Урала. — М.: Наука, 1974. 230 с.
  9. Катошин А.Ф. Перспективы нефтегазоносности передовых складок Урала Пермского Приуралья // Геология, геофизика и разработка нефтяных и газовых месторождений. 2004. № 10. С. 4‒12.
  10. Керимов В.Ю., Кузнецов Н.Б., Мустаев Р.Н., Осипов А.В., Бондарев А.В., Нефедова А.С. Условия формирования скоплений углеводородов во взбросонадвиговых структурах восточного борта Предуральского прогиба // Нефтяное хозяйство. 2017. № 7. С. 36‒41.
  11. Климов П.И. Государственная геологическая карта СССР. – М-б 1:200 000. – Лист М–40–III. — М.: МИНГЕО СССР, 1950. 1 лист.
  12. Кузнецов Н.Б., Керимов В.Ю., Осипов А.В., Бондаренко А.В., Монакова А.С. Эволюция, геодинамика поднадвиговых зон Предуральского краевого прогиба и геомеханическое моделирование формирования скоплений углеводородов // Геотектоника. 2019. № 3. С. 3–20.
  13. Кураленко Н.П., Пржиялговский Е.С. О тектонике западного склона Южного Урала в бассейнах рек Иняк и Малая Сюрень. – В сб.: Региональная геология некоторых районов СССР. – М.: МГУ, 1978. Вып. 3. С. 5–11.
  14. Лаврушина Е.В., Кузнецов А.Б., Пржиялговский Е.С., Журавлева Н.Д. Sr-хемостратиграфия отложений нижней перми Южного Урала // Стратиграфия. Геол. корреляция. 2025. В печати.
  15. Лядский П.В., Кваснюк Л.Н., Жданов А.В., Чечулина О.В., Шмельков Н.Т., Бельц Г.М., Курочкина Е.С., Оленица Т.В. Государственная геологическая карта Российской Федерации. Масштаб 1 : 1 000 000 (третье поколение). Серия Уральская. – Лист М-40 (Оренбург). Объяснительная записка. — СПб.: ВСЕГЕИ, 2013. 352 с.
  16. Мизенс Г.А. Об этапах формирования Предуральскоrо прогиба // Геотектоника. 1997. № 5. С. 33–46.
  17. Наугольных С.В., Кузнецов Н.Б., Полина С.Д., Данцова К.И., Романюк Т.В., Колодяжный С.Ю. Местонахождение ископаемых растений Юлдыбаево (кунгурский ярус нижней перми; Республика Башкортостан, Россия) и его положение в системе кунгурских фитоориктоценозов Восточно-Европейской платформы // Стратиграфия и геол. корреляция. 2025. № 1. С. 58–78.
  18. Оффман П.Е., Буш Э.А. О тектонике западного склона Урала в связи с проблемой его нефтегазоносности // Изв. АН СССР. Сер. геол. 1972. № 7. С. 17‒42.
  19. Политыкина М.А., Тюрин А.М., Макаров С.Е., Петрищев В.П., Панкратьев П.В., Багманова С.В. Перспективы нефтегазоносности оренбургского сегмента передовых складок Урала // Геология нефти и газа. 2021. № 6. С. 59–71.
  20. Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). — Уфа: Уфимский НЦ РАН. 2010. 279 с.
  21. Пучков В.Н., Косарев А.М., Знаменский С.Е., Светлакова А.Н., Разуваев В. И. Геологическая интерпретация комплексного сейсмического профиля УРСЕЙС–95. — В кн.: 50 лет Институту геологии УНЦ РАН (наука, проблемы, люди). — Под ред. В.Н. Пучкова — Уфа: Гилем, 2001. 60 с.
  22. Пучков В.Н., Перес-Эстаун А., Браун Д., Альварес-Маррон Х. Краевой складчато-надвиговый пояс орогена: структура и происхождение (на примере Башкирского Урала) // Вестн. ОГГГГН РАН. 1(3). 1998. С. 70–99 [электронный журнал].
  23. Пущаровский, Ю.М. Краевые прогибы, их тектоническое строение и развитие. — Под ред. Н.П. Хераскова — М: АН СССР, 1959. 152 с. (Тр. ГИН АН СССР. 1959. Вып. 28).
  24. Руженцев В.Е. Типовой разрез и биостратиграфия сакмарского яруса // Докл. АН СССР. 1950. Т. 71. № 6. С. 1101–1104.
  25. Руженцев В.Е. Ассельский ярус пермской системы // Докл. АН СССР. 1954. Т. 99. № 6. С. 1079–1082.
  26. Руженцев С.В. Особенности структуры и механизм образования сорванных покровов. — Под ред. А.В. Пейве – М.: Наука, 1971. 136 с. (Тр. ГИН АН СССР. 1971. Вып. 223).
  27. Руженцев С.В., Самыгuн С.Г. Структура и тектоническое развитие области сочленения Восточно-Европейской платформы и Южного Урала // Геотектоника. 2004. № 4. С. 20–44.
  28. Светлакова А.Н., Разуваев В.И., Горожанина Е.Н., Пучков В.Н., Днистрянский В.И., Гореликов В.И., Побережский С.М. Горожанин В.М. Новые данные о строении южной части Предуральского прогиба по результатам сейсмических работ // ДАН. 2008. Т. 423. № 4. С. 502–506.
  29. Скрипий А.А., Юнусов Н.К. Структуры растяжения и сжатия в зоне сочленения Южного Урала и Восточно-Европейской платформы // Геотектоника. 1989. № 6. С. 62–71.
  30. Твердохлебов В.П., Маврин К.А. Государственная геологическая карта Российской Федерации. – М-б 1:200 000. – Лист М–40–III. – М.: ВСЕГЕИ, 2001. 1 лист.
  31. Хворова И.В. Флишевая и нижне-молассовая формации Южного Урала. — Под ред. Н.С. Шатского – М.: Изд-во АН СССР. 1961. 352 с. (Тр. ГИН АН СССР. 1961. Вып. 37).
  32. Эз В.В., Гафт Д.Е., Кузнецов Б.И. Морфология и условия образования голоморфной складчатости на примере Зилаирского синклинория Южного Урала. — Отв. ред. Ю.М. Шейнманн – М.: Наука, 1965. С. 102.
  33. Al-Saffar M. Geometry of fault–propagation folds: method and application // Tectonophysics. 1993. Vol. 223. P. 363–380.
  34. Alvarez-Marron J., Brown D., Perez-Estaun A., Puchkov V., Gorozhanina Y. Accretionary complex structure and kinematics during Paleozoic arc–continent collision in the Southern Urals // Tectonophysics. 2000. Vol. 25. P. 175–191.
  35. Ayala C., Kimbell G.S., Brown D., Ayarza P., Menshikov Y.P. Magnetic evidence for the geometry and evolution of the eastern margin of the East European Craton in the Southern Urals // Tectonophysics. 2000. Vol. 320. P. 31–44.
  36. Brown D., Alvarez-Marron J., Perez-Estaun A., Puchkov V., Ayala C. Basement influence on foreland thrust and fold belt development: an example from the southern Urals. // Tectonophysics. 1999. Vol. 308. P. 459–472.
  37. Brown D., Alvarez-Marron J., Pérez-Estaùn A., Gorozhanina Ye., Baryshev V., Puchkov V. Geometric and kinematic evolution of the foreland thrust and fold belt in the Southern Urals // Tectonics. 1997. Vol. 16. P. 551–562.
  38. Brown D., Alvarez-Marron J., Perez-Estaun A., Gorozhanina Y., Puchkov V. The structure of the south Urals foreland fold and thrust belt at the transition to the Precaspian Basin // J. Geol. Soc. 2004. Vol. 161. No.5. P. 813–822. doi: 10.1144/0016-764903-174
  39. Brown D., Juhlin C., Tryggvason F. M., Rybalka A., Puchkov V., Petrov G. Structural architecture of the Southern and Middle Urals foreland from reflection seismic profiles // Tectonics. 2006. Vol. 25. P. 1–12. doi: 10.1029/2005TC001834
  40. Butler W.H. Area balancing as a test of models for the deep structure of mountain belts, with specific reference to the Alps // J. Struct. Geol. 2013. Vol. 52. P.251‒273. Doi: doi.org/10.1016/j.jsg.2013.03.009
  41. Carbonell R., Lecerf D., Itzin M., Gallart J., Brown D. Mapping the Moho beneath the Southern Urals with wide-angle reflections // Geophys. Res. Lett. 1998. Vol. 25. No. 22. P. 4229–4232.
  42. Chernykh V.V., Chuvashov B.I., Shen S.Z., Henderson C.M. Proposal for the Global Stratotype Section and Point (GSSP) for the base-Sakmarian Stage (Lower Permian) // Permophiles. 2016. Vol. 63. P. 4–18.
  43. Chester J.S., Chester F.M. Fault-propagation folds above thrusts with constant dip // J. Struct. Geol. 1990. Vol. 12. P. 903–910.
  44. Dahlstrom C.D.A. Geometric constraints derived from the law of conservation of volume and applied to evolutionnary models for detachment folding // AAPG. Bull. 1990. Vol. 74. P. 336–344.
  45. Echtler H.P., Stiller M., Steinhoff F., et al. Preserved collisional crustal structure of the Southern Urals revealed by vibroseis profiling // Science. 1996. Vol. 274. P. 224–226.
  46. Epard J.L., Groshong R.H. Kinematic model of detachment folding including limb rotation, fixed hinges and layer-parallel strain // Tectonophysics. 1995. Vol. 247. P. 85–103.
  47. Medwedeff D.A. Growth fault bend folding at Southeast Lost Hills, San Joaquim Valley, California // AAPG. Bull. 1989. Vol. 73. P. 54–67.
  48. Mercier E., Rafini S., Ahmadi R. Folds Kinematics in “Fold-and-Thrust Belts” the “Hinge Migration” Question, a Review. – In: Thrust Belts and Foreland Basins. – Ed.by O. Lacombe, F. Lavé, J. Vergés, (Springer, Berlin‒Heidelberg, Germany. 2007. Vol.7), P.135–147. doi: 10.1007/978-3-540-69426-7_7
  49. Poblet J., McClay K. Geometry and Kinematics of Single-Layer Detachment Folds // AAPG. Bull. 1996. Vol. 80. P. 1085–1109.
  50. Suppe J. Principles of structural geology, (Prenctice–Hall, New Jersey, USA. 1985), 537 p.
  51. Suppe J., Chou T.G., Hook S.C. Rates of folding and faulting determined from growth strata.‒ In: Thrust tectonics. – Ed. by K.R. McClay, (Chapman & Hall. NY., CD, USA. 1992), P. 105–121.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Geological scheme of the Sakmaro-Ik segment of the foredeep fold zone (according to [8, 24], with modifications and additions). (a) – Sakmaro-Ik segment; (b) – location of the study region. (a) shows (dashed black line contour) the location of the study areas: I – Uskalyk–Assel (northern), II – Kasmarka–Sakmara–Ural (southern). (b) shows (crimson contour) the location of the Sakmaro-Ik segment. Sedimentary rock complexes (1–14): 1 – modern alluvium, 2 – Lower Triassic, 3 – Middle and Upper Permian (undivided); 4–7 – stages of the lower part of the Permian system: 4 – Kungurian, 5 – Artinskian, 6 – Sakmara, 7 – Asselian; 8 – Asselian and Gzhelian stages of the upper section of the Carboniferous system (undivided); 9–10 – stages of the upper section of the Carboniferous system: 9 – Gzhelian, 10 – Kasimovian; 11–12 – stages of the middle section of the Carboniferous system: 11 – Moscowian, 12 – Bashkirian; 13–14 – stages of the lower section of the Carboniferous system: 13 – Serpukhovian, 14 – Visean; 15 – Syurensky reverse fault (western front of the allochthon); 16 – main faults in the allochthon

Download (1015KB)
3. Fig. 2. Photo of deformation structures in outcrops of terrigenous-carbonate and flysch packs of layers. (a) – Folds in the core of the Chumazin syncline in the northern side of the Uskalyk River valley (view to the north); (b) – intra-layer folds in limestones with chert lenses, Sakmarian stage (Verblyuzhka Mountain, right bank of the Ural River); (c) – synsedimentary disharmonic folds in limestones of the Serpukhovian stage (Assel River northeast of Abzanovo village); (g)–(d) – system of ordered folds in carbonate-clay member of Sakmarian stage in western wing of Kurmainskaya anticline (south of Kondurovka village): (g) – fold, in which differences in deformation of competent limestone layer and more plastic clay layer are observed, (d) – slip surface in fold lock and mullion-structures, revealed on the roof of limestone layer in form of longitudinal grooves; (e) – zone of sublayer cataclastic flow in clayey-sandstone member of Syurenskaya suite (Gzhelian and Asselian stages (undivided)) in zone of meridional faults (north of Assel river); (g) – zone of cataclasis and boudinage in clayey-carbonate member of Gzhelian stage (south of Chumaz river valley); (z) – “pencil” boudins of siltstones in the flysch layer of the Kasimov stage (west of the village of Abzanovo)

Download (1MB)
4. Fig. 3. Structural map of the northern section of the Sakmaro-Ik deformation zone (the area of the Uskalyk and Assel rivers). Areas of detailed studies are indicated (rectangles with a dashed line): I - the core of the Chumazin syncline, Kruzhevnaya mountain (position - see Fig. 4); II - a zone of folds in the C₂₋₃ flysch complex north of Abzanovo village (position - see Fig. 5). 1 - traced marker layers; 2 - faults of different ranks; 3-4 - axes of macro-level folds: 3 - synclines, 4 - anticlines; 5 - elements of layer occurrence; 6 - deep wells; 7 - elements of macro-level folds (hinge inclination (arrow and value in degrees) and axial planes (blue dash)); 8–9 – amplitudes of displacements along faults (m); 8 – horizontal (strike-slip), 9 – vertical (normal-reverse faults)

Download (856KB)
5. Fig. 4. The structure of the core of the Chumazinskaya synclinal fold (Kruzhevnaya Mountain). The location of the site - see Fig. 3. (a) - Scheme of structural interpretation of the space image; (b) - structural-geological map. 1 - traced horizons (highlighted: layers of a certain stratigraphic position (color range), layers of unclear stratigraphic position (dotted line in black)); 2 - horizons, the correlation of which is carried out presumably; 3 - faults: a - main, b - secondary; 4 - assumed displacement amplitudes along faults (m); 5-6 - axes of macrolevel folds: 5 - anticlines, 6 - synclines; 7 - bedding elements

Download (932KB)
6. Fig. 5. Folded structure of carbonate-terrigenous complexes of the Middle and Upper Carboniferous in the area west of the Bashkirskaya Chumaz-Abzanovo highway. For the location of the area, see Fig. 3. (a) – Scheme of structural interpretation of the space image taking into account the field lithological correlation data of the layers (points of structural and lithological descriptions are shown); (b) – stereograms of fold elements (the color of the structural element corresponds to the numbers of the measurement points) of different scale ranks (Schmidt grid, lower hemisphere). Scheme of structural interpretation (1-7): 1 – traced horizons (highlighted: layers of a certain stratigraphic position (color range), layers of unclear stratigraphic position (dotted line in black)); 2 – horizons, the correlation of which was carried out presumably; 3 – faults: a – main, b – secondary; 4–5 ‒ macrolevel fold axes: 4 – anticlines, 5 – synclines; 6 – fold element measurement points; 7 – bedding elements; stereograms of fold elements (8–13): 8–9 – poles of axial surfaces: 8 – macrofolds, 9 – mesofolds; 10–11 – hinges: 10 – macrofolds, 11 – mesofolds; 12 – bedding planes of layers in macrofold wings; 13 – numbers of point groups where structural element orientation measurements were taken (the color of the points corresponds to the fold elements on the stereogram)

Download (895KB)
7. Fig. 6. Structural map of the southern section of the Sakmaro-Ik deformation zone (the area of the Kasmarka River – Sakmara River – Ural River). (a) – Position of fragment A‒A′ of seismic profile No. 281003; (b) – line of geological section II‒II′. 1 – traced marker layers; 2 – faults of different ranks: a – frontal reverse fault, b – other major faults, c – minor faults; 3 – bedding elements; 4–5 – axes of macrolevel folds: 4 – synclines, 5 – anticlines; 6 – tilt of hinges (arrow, value in degrees) and axial planes (blue dash); 7 – line of change of regional tilt of hinges; 8-9 – fault displacements: 8 – horizontal (shift direction and magnitude (m)), 9 – vertical (magnitude (m)); 10 – deep wells (according to [2])

Download (957KB)
8. Fig. 7. Geological sections I-I' and II-II', crossing the zone of frontal deformations along the valleys of the Assel River (Yuldybaevo village - Abzanovo village) and the Sakmara River (Kondurovka village - Ziyanchurino village). The position of the sections - see Fig. 3, see Fig. 6. Shown (pale tone) are the supposed deep and denuded parts of the section.

Download (997KB)
9. Fig. 8. Comparison of data on regional seismic profile No. 281003 (according to [2]) with the geological structure (section II-II'). The position of the fragment (A-A') of seismic profile No. 281003 is shown in Fig. 6. Designated: main stratigraphic boundaries (solid lines in blue); roof of the Sakmarian stage (solid line in blue); faults (dashed line in red).

Download (984KB)
10. Fig. 9. Reconstruction of the deformation stages of the Upper Paleozoic rock complex in the eastern side of the Cis-Ural trough in the post-Kungurian time. 1 – stratigraphic boundaries: a – Upper Paleozoic complexes, b – Lower Paleozoic ones assumed at depth; 2 – Sakmarian stage; 3 – faults of different ranks: a – frontal reverse fault, b – other faults; 4 – assumed position of the main detachment zone; 5 – position of an arbitrarily chosen limitation of the deformed rock volume; 6 – vector of horizontal displacement (deformation); 7 – preservation of the volume of rock complexes during deformation (equality of the areas of the upper and lower sectors)

Download (535KB)

Copyright (c) 2025 Russian academy of sciences