Colloidal dispersion properties of oil emulsions in an electromagnetic field

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of electromagnetic field on colloidal dispersion properties of water-oil emulsions of two resinous low paraffin oils is studied. It is shown that the maximum result of water-oil emulsion stratification is achieved after 15 minute treatment at a frequency of 250 Hz and a voltage of 17 kV for 10 wt % of emulsions and 500 Hz and 15 kV for 30 wt % of emulsions, respectively. With increasing time of emulsion treatment, the size and number of droplets in the oil phase decrease and the residual water content of the treated emulsions after stratification does not exceed 0.5 wt %. In an electromagnetic field, the drop-drop coalescence process in the emulsion is intensified due to the rapid destruction of the armor shells of water globules, the formation of new resin-asphaltene aggregates of a larger or smaller size, and the redistribution of components between the dispersion medium and the dispersed phase.

Full Text

Restricted Access

About the authors

Ju. V. Loskutova

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: reoloil@ipc.tsc.ru
Russian Federation, Tomsk

N. V. Yudina

Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences

Email: natal@ipc.tsc.ru
Russian Federation, Tomsk

References

  1. Sjoblom J., Aske N., Auflem I.H., Brandal O., Havre T.E., Sather O., Kallevik H. // Adv. Colloid Interface Sci. 2003. V. 100. P. 399–473. https://doi.org/10.1016/S0001-8686(02)00066-0
  2. Волкова Г.И., Лоскутова Ю.В., Прозорова И.В., Березина Е.М. Подготовка и транспорт проблемных нефтей. Томск: Изд-во ТГУ, 2015. 136 с.
  3. Langevin D., Poteau S., Hénaut I., Argillier J.F. // Oil & Gas Science and Technology – Rev. IFP. 2004. V. 59. № 5. P. 511-521. https://doi.org/10.2516/ogst:2004036
  4. Crude Oil Emulsions – Composition Stability and Characterization. Edited by Manar El-Sayed Abdel-Raouf. INTECH, 2012. 230 p. www. intechopen.org.
  5. Djuve J., Yang X., Fjellanger I.J., Sjoblom J., Pelizzetti E. // Colloid Polym. Sci. 2001. V. 279. № 3. P. 232–239. https://doi.org/10.1007/s003960000413
  6. Тронов В.П. Промысловая подготовка нефти. Казань: Изд-во “Фэн”, 2000. 260 с.
  7. Taolti S., Yiyang Z., Lu W., Sui Z., Bo P., Li M., Yu J. //J. Colloid Interfact Science. 2002. V. 255. P. 241–247. 10.1006/jcis.2002.8661' target='_blank'>https://doi: 10.1006/jcis.2002.8661
  8. Alsabagh A.M., Hassan M.E., Desouky S.E.M., Nasser N.M., Elsharaky E.A., Abdelhamid M.M. // Egyptian Journal of Petroleum. 2016. V. 25. № 4. P. 585–595. https://doi.org/10.1016/j.ejpe.2016.05.008
  9. Delfos R., Murphy S., Stanbridge D., Olujić Ž., Jansens P.J. // Minerals Engineering. 2004. V. 17. № 5. P. 721–731. https://doi.org/10.1016/j.mineng.2004.01.012
  10. Ni X., Mignard D., Saye B., Johnstone J.C., Pereira N. // Chemical Engineering Science. 2002. V. 57. № 11. P. 2101–2114. https://doi.org/10.1016/S0009-2509(02)00100-8
  11. Zhao F., Tian Z., Yu Z., Shang H., Wu Y., Zhang Y. // Energy Sci Eng. 2020. V. 8. P. 4158–4175. https://doi.org/10.1002/ese3.814
  12. Sjöblom J., Mhatre S., Simon S., Skartlien R., Sørland G. // Advances in Colloid and Interface Science. 2021. V. 294. P. 102455. https://doi.org/10.1016/j.cis.2021.102455
  13. Yang D., Xu M., He L., Luo X., Lü Y., Yan H., Tian C. // Chemical Engineering Science. 2015. V. 138. P. 71–85. https://doi.org/10.1016/j.ces.2015.07.049
  14. Loskutova Yu.V., Yudina N.V. // Petroleum Chemistry. 2022. V. 62. № 5. P. 506–514. https://doi.org/10.1134/S0965544122020220
  15. Kovaleva L.A., Minnigalimov R.Z., Zinnatullin R.R. // Energy&Fuels. 2011. V. 25. P. 3731–3738. https://doi.org/10.1021/ef200249a
  16. Hosseini M., Shahavi M.H. // Separation Science and Engineering. Chinese Journal of Chemical Engineering. 2012. V. 20. № 4. P. 654–658.
  17. Eowa J.S., Ghadiri M., Sharif A.O., Williams T.J. // Chemical Engineering Journal. 2001. V. 84. P. 173–192. https://doi.org/10.1016/S1385-8947(00)00386-7
  18. Taghavi H., Ashoori S., Mousavi S.H. // Petroleum Science and Technology. 2017. V. 36. № 7. P. 1–7. http://dx.doi.org/10.1080/10916466.2017.1347680
  19. Ali N., Zhang B., Zhang H., Zaman W., Li X., Li W., Zhang Q. // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2015. V. 472. P. 38–49. https://dx.doi.org/10.1016/j.colsurfa.2015.01.087
  20. Yang D., Ghadiri M., Sun Y., He L., Luo X., Lü Y. // Chemical Engineering Research and Design. 2018. V. 136. P. 83–93. https://doi.org/10.1016/j.cherd.2018.05.004
  21. Less S., Vilagines R. // Journal of Petroleum Science and Engineering. 2012. V. 81. P. 57–63. https://dx.doi.org/10.1016/j.petrol.2011.12.003
  22. Mhatre S., Thaokar R. // Chemical Engineering and Processing. 2015. V. 96. P. 28–38. http://dx.doi.org/10.1016/j.cep.2015.07.025

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Micrographs of 10 and 30 wt.% emulsions EN1 and EN2 before and after electromagnetic treatment.

Download (448KB)

Copyright (c) 2025 Russian Academy of Sciences