Spectral properties of polymer composites doped with boron difluoride β-ketoiminates

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Polymeric luminescent compositions based on polycarbonate and polystyrene doped with β-ketoiminates of boron difluoride were obtained. The luminescent properties of 12 dyes with different substituents were investigated. The influence of the concentration of boron difluoride βketoiminates on the spectral properties of the samples was studied. It was found that the investigated dyes are characterized by monomeric luminescence even at tenfold increase of luminophore concentration (0.05–0.5%). It was found that compositions containing the dyes 3-amino-1-phenyl-2-buten-1-oneate of boron difluoride (1a) and 3-amino-1-phenyl-2-buten-1-oneate of boron difluoride (2a) exhibit exciplex luminescence in polystyrene.

Full Text

Restricted Access

About the authors

R. E. Bodyk

Far Eastern Federal University

Author for correspondence.
Email: bodyk.re@dvfu.ru
Russian Federation, Ajax settlement, Russky Island, Vladivostok

A. A. Khrebtov

Far Eastern Federal University; Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: bodyk.re@dvfu.ru
Russian Federation, Ajax settlement, Russky Island, Vladivostok; Vladivostok

G. O. Tretyakova

Far Eastern Federal University; Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: bodyk.re@dvfu.ru
Russian Federation, Ajax settlement, Russky Island, Vladivostok; Vladivostok

E. V. Fedorenko

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: bodyk.re@dvfu.ru
Russian Federation, Vladivostok

A. G. Mirochnik

Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences

Email: bodyk.re@dvfu.ru
Russian Federation, Vladivostok

References

  1. Gan N., Shi H., An Z., et al. // Advanced Functional Materials. 2018. V. 28. № 51. P. 1802657.
  2. Gao H., Ma X. // Aggregate. 2021. V. 2. № 4.
  3. Zhang G., Chen J., Payne S. et al. // Journal of the American Chemical Society. 2007. V. 129. № 29. P. 8942.
  4. Tavakol D.N., Schwager S.C., Jeffries L.A., et al. // Advances in Skin & Wound Care. 2020. V. 33. № 8. P. 428.
  5. Khrebtov A.A., Fedorenko E.V., Mirochnik A.G. // Polymer. 2022. V. 256. P. 125255.
  6. Mitschke U., Bäuerle P. // Journal of Materials Chemistry. 2000. V. 10. № 7. P. 1471.
  7. Brabec C.J., Sariciftci N.S., Hummelen J.C. // Advanced Functional Materials. 2001. V. 11. № 1. P. 15.
  8. Stutzmann N., Friend R. H., Sirringhaus H. // Science. 2003. V. 299. № 5614. P. 1881.
  9. Mei J., Hong Y., Lam J. W. Y. et al. // Advanced Materials. 2014. V. 26. № 31. P. 5429.
  10. Hong Y., Lam J.W.Y., Tang B.Z. // Chemical Communications. 2009. No. 29. P. 4332.
  11. Hong Y. // Methods and Applications in Fluorescence. 2016. V. 4. № 2. P. 022003.
  12. Xu S., Evans R.E., Liu T., et al. // Inorganic Chemistry. 2013. V. 52. № 7. P. 3597.
  13. Mirochnik A.G., Fedorenko E.V., Shlyk D.K. // Russian Chemical Bulletin. 2016. V. 65. № 3. P. 806.
  14. Chen P.Z., Niu L.Y., Chen Y.Z. et al. // Coordination Chemistry Reviews. 2017. V. 350. P. 196.
  15. Yoshii R., Nagai A., Tanaka K., et al. // Chemistry – A European Journal. 2013. V. 19. № 14. P. 4506.
  16. Gao H., Xu D., Liu X. et al. // RSC Advances. 2017. V. 7. № 3. P. 1348.
  17. Zhao J., Peng J., Chen P. et al. // Dyes and Pigments. 2018. V. 149. P. 276.
  18. Suenaga K., Uemura K., Tanaka K. et al. // Polymer Chemistry. 2020. V. 11. № 6. P. 1127.
  19. Jäkle F. // Chemical Reviews. 2010. V. 110. № 7. P. 3985.
  20. Suenaga K., Yoshii R., Tanaka K. et al. // Macromolecular Chemistry and Physics. 2016. V. 217. № 3. P. 414.
  21. Tretyakova G.O., Bukvetskii B.V., Fedorenko E.V. et al. // Russian Chemical Bulletin. 2015. V. 64. № 10. P. 2312.
  22. Fedorenko E.V., Mirochnik A.G., Beloliptsev A.Y., et al. // ChemPlusChem. 2018. V. 83. № 3. P. 117.
  23. Fedorenko E.V., Tretuakova G.O., Mirochnik A.G. et al. // Journal of Fluorescence. 2016. V. 26. № 5. P. 1839.
  24. Itoh K., Okazaki K., Fujimoto M. // Australian Journal of Chemistry. 2003. V. 56. № 12. P. 1209.
  25. Chow Y.L., Johansson C.I. // The Journal of Physical Chemistry. 1995. V. 99. № 49. P. 17558.
  26. Fedorenko E.V., Khrebtov A.A., Mirochnik A.G., et al. // Optics and Spectroscopy. 2019. V. 127. № 3. P. 459.
  27. Fedorenko E.V., Lyubykh N.A., Khrebtov A.A. et al. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2023. P. 123193.
  28. Fedorenko E.V., Mirochnik A.G., Beloliptsev A.Y. et al. // ChemPlusChem. 2018. V. 83. № 3. P. 117.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Structural formulas of β-ketoiminates of boron difluoride.

Download (132KB)
3. Fig. 1. Time-resolved luminescence spectra of 1a in PS (a), recorded after 75.5 (1), 76 (2), 77.1 ns (3), and 2a in PS (a), recorded after 75.5 (1), 75.6 (2), 75.7 ns (3), from the moment of the laser pulse.

Download (171KB)
4. Fig. 2. Spectra 1c (a) and 2c (b) in the PC matrix at different phosphor concentrations: 1 – absorption spectrum at a concentration of 0.05%; 2 – luminescence spectrum at a concentration of 0.05%; 3 – absorption spectrum at a concentration of 0.5%; 4 – luminescence spectrum at a concentration of 0.5%.

Download (202KB)

Copyright (c) 2024 Russian Academy of Sciences