Methods of a satellite formation orbital motion control based on consensus algorithms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Methods for synthesizing control of the relative motion of a group of spacecraft are considered. The main goal is to develop a control strategy that compensates for the disintegration of the group caused by relative orbital drift. The control design employs techniques based on various types of graphs to describe satellite interactions. A proof is provided demonstrating the feasibility of eliminating relative satellite drift using a method based on directed graphs. The resulting algorithm is adapted to scenarios where one or more spacecraft in the group may malfunction. To derive the control in such cases, a modified version of the Raft protocol for achieving consensus in multi-agent systems is used. In addition to analytical derivations and the general methodology, the work presents results from numerical simulations.

About the authors

R. R. Dadashev

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Author for correspondence.
Email: shestakov@keldysh.ru
Moscow

S. A. Shestakov

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Email: shestakov@keldysh.ru
Moscow

References

  1. Mesbahi M., Egerstedt M. Graph Theoretic Methods in Multiagent Networks. Princeton University Press, 2010. 424 p.
  2. Monakhova U., Ivanov D., Mashtakov Y. et al. Communication area estimation for decentralized control of nanosatellites swarm // Acta Astronautica. 2023. V. 211. P. 49–59. https://doi.org/10.1016/j.actaastro.2023.06.003
  3. Дадашев Р.Р., Шестаков С.А. Методика управления группой спутников на основе коммуникационных графов // Препринты ИПМ им. М.В. Келдыша. 2022. № 90. С. 1–31. https://doi.org/10.20948/prepr-2022-90
  4. Clohessy W.H., Wiltshire R.S. Terminal guidance system for satellite rendezvous // J. Aerospace Sciences. 1960. V. 27. Iss. 9. P. 653–658. https://doi.org/10.2514/8.8704
  5. Fischer M.J., Lynch N.A., Paterson M.S. Impossibility of distributed consensus with one faulty process // J. Association for Computing Machinery. 1985. V. 32. Iss. 2. P. 374–382. https://doi.org/10.1145/3149.214121
  6. Lamport L. The part-time parliament // ACM Transactions on Computer Systems. 1998. V. 16. Iss. 2. P. 133–169. https://doi.org/10.1145/279227.279229
  7. Lamport L. Lower bounds for asynchronous consensus // Distributed Computing. 2006. V. 19. Iss. 2. P. 104–125. https://doi.org/10.1007/s00446-006-0155-x
  8. Oki B.M., Liskov B.H. Viewstamped replication: A general primary copy // Proc. 7th Annual ACM Symposium on Principles of Distributed Computing – PODC’88. 1988. P. 8–17. https://doi.org/10.1145/62546.62549
  9. Skeen D. A quorum-based commit protocol // Proc. 6th Berkeley Workshop. 1982. P. 69–80.
  10. Junqueira F.P., Reed B.C., Serafini M. Zab: High-performance broadcast for primary-backup systems // IEEE/IFIP 41st International Conference on Dependable Systems & Networks (DSN). 2011. P. 245–256. https://doi.org/10.1109/DSN.2011.5958223
  11. Ongaro D., Ousterhout J. In search of an understandable consensus algorithm // USENIX Annual Technical Conference (USENIX ATC 14). 2014. P. 305–319. https://doi.org/10.5555/2643634.2643666
  12. Tariverdi A., Torresen J. Rafting Towards Consensus: Formation Control of Distributed Dynamical Systems. 2023. https://doi.org/10.48550/arXiv.2308.10097

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences