Байесовская реконструкция метеоров по данным многоканального детектора PAIP-V
- Авторы: Шаракин С.А.1, Сараев Р.Е.1,2
-
Учреждения:
- Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова
- МГУ имени М.В. Ломоносова, Физический факультет
- Выпуск: Том 63, № 5 (2025)
- Страницы: 453-470
- Раздел: Статьи
- URL: https://journals.eco-vector.com/0023-4206/article/view/696715
- DOI: https://doi.org/10.31857/S0023420625050019
- ID: 696715
Цитировать
Полный текст
Аннотация
В работе рассматривается проблема реконструкции событий, регистрируемых орбитальными и наземными детекторами с низким угловым, но высоким временным разрешением. Показано, что в такой ситуации все еще можно получить высокоточную пространственно-временную реконструкцию, если в рамках единого алгоритма объединить информацию как о геометрии и кинематике движения, так и его динамике (кривой свечения). Это особенно важно при наличии многочисленных конструктивных зазоров между каналами фотоприемника, когда регистрируется лишь часть события. В настоящей работе для реконструкции трековых событий (треков метеоров, спутников и т.п.) предложен байесовский метод, реализованный средствами библиотеки PyMC: параметрическая модель учитывает как особенности самого явления, так и процесса его регистрации, а апостериорное распределение на параметры строится при помощи MCMC-сэмплирования. Апробация метода осуществлена на примере небольшой выборки метеоров потока Геминиды-2022, зарегистрированных наземным детектором PAIP-V, установленным в Мурманской области.
Об авторах
С. А. Шаракин
Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: saraev.re17@physics.msu.ru
Москва, Россия
Р. Е. Сараев
Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова; МГУ имени М.В. Ломоносова, Физический факультет
Email: saraev.re17@physics.msu.ru
Москва, Россия
Список литературы
- Adams J.H., Ahmad S., Albert J. et al. An evaluation of the exposure in nadir observation of the JEM‑EUSO mission // Astropart. Phys. 2013. V. 44. P. 76–90. https://doi.org/10.1016/j.astropartphys.2013.01.008
- Casolino M., Klimov P., Piotrowski L. Observation of ultra high energy cosmic rays from space: Status and perspectives // Progress of Theoretical and Experimental Physics. 2017. V. 2017. Iss. 12. https://doi.org/10.1093/ptep/ptx169
- Bertaina M., Biktemerova S., Bittermann K. et al. Performance and air‑shower reconstruction techniques for the JEM‑EUSO mission // Advances in Space Research. 2014. V. 53. Iss. 10. P. 1515–1535. https://doi.org/10.1016/j.asr.2014.02.018
- Barghini D., Bertaina M., Cellino A. et al. UV telescope TUS on board Lomonosov satellite: Selected results of the mission // Advances in Space Research. 2022. V. 70. Iss. 9. P. 2734–2749. https://doi.org/10.1016/j.asr.2021.11.044
- Adams J.H., Ahmad S., Albert J.N. et al. Science of atmospheric phenomena with JEM‑EUSO // ExP. Astron. 2015. V. 40. Iss. 1. P. 239–251. https://doi.org/10.1007/s10686-014-9431-0
- Bacholle S., Barrillon P., Battisti M. et al. Mini‑EUSO mission to study earth UV emissions on board the ISS // Astrophysical J. Supplement Series. American Astronomical Society. 2021. V. 253. Iss. 2. P. 36. https://doi.org/10.3847/1538-4365/abd93d
- Abdellaoui G., Abe S., Adams J.H. et al. EUSO‑TA – first results from a ground‑based EUSO telescope // Astroparticle Physics. 2018. V. 102. P. 98–111. https://doi.org/10.1016/j.astropartphys.2018.05.007
- Adams J.H., Ahmad S., Allard D. et al. A Review of the EUSO‑Balloon Pathfinder for the JEM‑EUSO Program // Space Sci. Rev. 2022. V. 218. Iss. 1. Art. ID 3. https://doi.org/10.1007/s11214-022-00870-x
- Abdellaoui G., Abe S., Adams J.H. et al. EUSO‑SPB1 mission and science // Astroparticle Physics. 2024. V. 154. Art. ID 102891. https://doi.org/10.1016/j.astropartphys.2023.102891
- Klimov P., Battisti M., Belov A. et al. Status of the k‑EUSO orbital detector of ultra‑high energy cosmic rays // Universe. 2022. V. 8. Iss. 2. https://doi.org/10.3390/universe8020088
- POEMMA Collaboration, Olinto A.V., Krizmanic J., Adams J.H. et al. The POEMMA (Probe of Extreme Multi‑Messenger Astrophysics) Observatory // J. Cosmology & Astroparticle Physics. 2021. Iss. 06. Art. ID 007. https://doi.org/10.1088/1475-7516/2021/06/007
- Casolino M., Barghini D., Battisti M. et al. Observation of night‑time emissions of the Earth in the near UV range from the International Space Station with the mini‑EUSO detector // Remote Sensing of Environment. 2023. V. 284. Art. ID 113336. https://doi.org/10.1016/j.rse.2022.113336
- Khrenov B.A., Garipov G.K., Kaznacheeva M.A. et al. An extensive‑air‑shower‑like event registered with the TUS orbital detector // J. Cosmology & Astroparticle Physics. 2020. V. 2020. Iss. 03. Art. ID 033. https://doi.org/10.1088/1475-7516/2020/03/033
- Sharakin S., Hernandez O.I.R. Kinematics reconstruction of the EAS‑like events registered by the TUS detector // J. Instrumentation. IOP Publishing. 2021. V. 16. Iss. 07. Art. ID T07013. https://doi.org/10.1088/1748-0221/16/07/T07013
- Barghini D., Battisti M., Belov A. et al. Observation of meteors from space with the mini–EUSO detector on board the International Space Station // Astronomy & Astrophysics. 2024. V. 49236. https://doi.org/10.1051/0004-6361/202449236
- Ruiz‑Hernandez O.I., Sharakin S., Klimov P. et al. Meteors observations by the orbital telescope TUS // Planetary and Space Science. 2022. V. 218. Art. ID 105507. https://doi.org/10.1016/j.pss.2022.105507
- Ceplecha Z. Geometric, Dynamic, Orbital and Photometric Data on Meteoroids from Photographic Fireball Networks // Bulletin of the Astronomical Institutes of Czechoslovakia. 1987. V. 38. Art. ID 222.
- Borovička J. The Comparison of Two Methods of Determining Meteor Trajectories from Photographs // Bulletin of the Astronomical Institutes of Czechoslovakia. 1990. V. 41. Art. ID 391.
- Gural P.S. A new method of meteor trajectory determination applied to multiple unsynchronized video cameras // Meteoritics & Planetary Science. 2012. V. 47. Iss. 9. P. 1405–1418. https://doi.org/10.1111/j.1945-5100.2012.01402.x
- Vida D., Gural P.S., Brown P.G. et al. Estimating trajectories of meteors: An observational Monte Carlo approach – I. Theory // Monthly Notices of the Royal Astronomical Society. 2019. V. 491. Iss. 2. P. 2688–2705. https://doi.org/10.1093/mnras/stz3160
- Sansom E.K., Rutten M.G., Bland P.A. Analyzing meteoroid flights using particle filters // Astronomical J. The American Astronomical Society. 2017. V. 153. Iss. 2. Art. ID 87. https://doi.org/10.3847/1538-3881/153/2/87
- Jaynes E.T. Probability Theory: The Logic of Science. Cambridge University Press; Annotated edition (9 June 2003), 2003.
- Sivia D., Skilling J. Data Analysis: A Bayesian Tutorial. OUP Oxford, 2006.
- Dyk D.A. van, Kang H. Highly Structured Models for Spectral Analysis in High‑Energy Astrophysics // Statistical Science. Institute of Mathematical Statistics. 2004. V. 19. Iss. 2. P. 275–293. https://doi.org/10.1214/088342304000000314
- Connors A., Esch D.N., Freeman P. et al. Deconvolution in high‑energy astrophysics: science, instrumentation, and methods // Bayesian Analysis. International Society for Bayesian Analysis. 2006. V. 1. Iss. 2. P. 189–235. https://doi.org/10.1214/06-BA107
- Gregory P.C., Loredo T.J. A New Method for the Detection of a Periodic Signal of Unknown Shape and Period // Astrophysical J. 1992. V. 398. Art. ID 146. https://doi.org/10.1086/171844
- Loredo T.J., Berger J.O., Chernoff D.F. et al. Bayesian methods for analysis and adaptive scheduling of exoplanet observations // Statistical Methodology. 2012. V. 9. Iss. 1. P. 101–114. https://doi.org/10.1016/j.stamet.2011.07.005
- Loredo T.J., Hendry M.A. Multilevel and hierarchical Bayesian modeling of cosmic populations // arXiv: Instrumentation and Methods for Astrophysics. 2019. https://doi.org/10.48550/arXiv.1911.12337
- Klimov P., Sharakin S., Belov A. et al. System of imaging photometers for upper atmospheric phenomena study in the Arctic region // Atmosphere. MDPI AG. 2022. V. 13. Iss. 10. Art. ID 1572. https://doi.org/10.3390/atmos13101572
- Berat C., Bottai S., De Marco D. et al. Full simulation of space‑based extensive air showers detectors with ESAF // Astroparticle Physics. 2010. V. 33. P. 221–247. https://doi.org/10.1016/j.astropartphys.2010.02.005
- Biktemerova S., Guzman A., Mernik T. Performances of JEM‑EUSO: angular reconstruction // Exper. Astron. 2015. V. 40. Iss. 1. P. 153–177. https://doi.org/10.1007/s10686-013-9371-0
- Abe S., Adams J.R. Jr., Allard D. et al. Developments and results in the context of the JEM‑EUSO program obtained with the ESAF simulation and analysis framework // Eur. Phys. J. C. 2023. V. 83. Iss. 11. Art. ID 1028. https://doi.org/10.1140/epjc/s10052-023-12090-w
- Sharakin S., Barghini D., Battisti M. ELVES measurements in the “UV atmosphere” (mini‑EUSO) experiment onboard the ISS and their reconstruction // Cosmic Research. 2024. V. 62. Iss. 10. P. 330–338. https://doi.org/10.1134/S0010952524600379
- Ceplecha Z., Revelle D.O. Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere // Meteoritics & Planetary Science. 2005. V. 40. Iss. 1. P. 35–54. https://doi.org/10.1111/j.1945-5100.2005.tb00363.x
- Loredo T.J., Wolpert R.L. Bayesian inference: More than Bayes’s theorem // Frontiers in Astronomy and Space Sciences. 2024. V. 11. Art. ID 1326926. https://doi.org/10.3389/fspas.2024.1326926
- Anderson J., King I.R. Toward high‑precision astrometry with WFPC2. I. Deriving an accurate point‑spread function // Publications of the Astronomical Society of the Pacific. The University of Chicago Press. 2000. V. 112. Iss. 776. Art ID 1360. https://doi.org/10.1086/316632
- Martin O. Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ. 2nd ed. Packt Publishing, 2018.
- Tran D., Wang H., Torresani L. et al. A closer look at spatiotemporal convolutions for action recognition // CoRR. 2017. V. abs/1711.11248. http://arxiv.org/abs/1711.11248
- Hajduková Jr. M., Koten P., Kornoš L. et al. Meteoroid orbits from video meteors. The case of the Geminids stream // Planetary and Space Science. 2017. V. 143. P. 89–98. https://doi.org/10.1016/j.pss.2017.01.004
- Neslušan L. A summary of the research of Geminid meteoroid stream // Contributions of the Astronomical Observatory Skalnate Pleso. 2015. V. 45. Iss. 1. P. 60–82.
- Koten P., Borovička J., Spurný P. et al. Atmospheric trajectories and light curves of shower meteors // Astronomy & Astrophysics. 12 AD. V. 428. P. 683–690. https://doi.org/10.1051/0004-6361:20041485
- Jenniskens P., Nenon Q., Albers J. et al. The established meteor showers as observed by CAMS // Icarus. 2016. V. 266. P. 331–354. https://doi.org/10.1016/j.icarus.2015.09.013
- Sharakin S.A., Saraev R.E. Probabilistic programming methods for reconstruction of multichannel imaging detector events: ELVES and TRACK // Moscow University Physics Bulletin. 2024. V. 79. P. S772–S780. https://doi.org/10.3103/S0027134924702230
- Pecina P., Koten P. On the theory of light curves of video‑meteors // Astronomy & Astrophysics. 2009. V. 499. Iss. 1. P. 313–320. https://doi.org/10.1051/0004-6361/200811503
- Jenniskens P., Gural P.S., Dynneson L. et al. CAMS: Cameras for all‑sky meteor surveillance to establish minor meteor showers // Icarus. 2011. V. 216. Iss. 1. P. 40–61. https://doi.org/10.1016/j.icarus.2011.08.012
- Chen H., Rambaux N., Vaubaillon J. Accuracy of meteor positioning from space‑ and ground‑based observations // Astronomy & Astrophysics. 2020. V. 642. Art. ID L11. https://doi.org/10.1051/0004-6361/202039014
- Arulampalam M.S., Maskell S., Gordon N. et al. Gaussian Bayesian tracking // IEEE Transactions on Signal Processing. 2002. V. 50. Iss. 2. P. 174–188. https://doi.org/10.1109/78.978374
- Sansom E.K., Jansen‑Sturgeon T., Rutten M.G. et al. 3D meteoroid trajectories // Icarus. 2019. V. 321. P. 388–406. https://doi.org/10.1016/j.icarus.2018.09.026
- Cranmer K., Brehmer J., Louppe G. The frontier of simulation‑based inference // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117(48). P. 30055–30062. https://doi.org/10.1073/pnas.1912789117
- Vida D., Brown P.G., Campbell‑Brown M. Modelling the measurement accuracy of pre‑atmosphere velocities of meteoroids // Monthly Notices of the Royal Astronomical Society. 2018. V. 479. Iss. 4. P. 4307–4319. https://doi.org/10.1093/mnras/sty1841
Дополнительные файлы



