Байесовская реконструкция метеоров по данным многоканального детектора PAIP-V

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

В работе рассматривается проблема реконструкции событий, регистрируемых орбитальными и наземными детекторами с низким угловым, но высоким временным разрешением. Показано, что в такой ситуации все еще можно получить высокоточную пространственно-временную реконструкцию, если в рамках единого алгоритма объединить информацию как о геометрии и кинематике движения, так и его динамике (кривой свечения). Это особенно важно при наличии многочисленных конструктивных зазоров между каналами фотоприемника, когда регистрируется лишь часть события. В настоящей работе для реконструкции трековых событий (треков метеоров, спутников и т.п.) предложен байесовский метод, реализованный средствами библиотеки PyMC: параметрическая модель учитывает как особенности самого явления, так и процесса его регистрации, а апостериорное распределение на параметры строится при помощи MCMC-сэмплирования. Апробация метода осуществлена на примере небольшой выборки метеоров потока Геминиды-2022, зарегистрированных наземным детектором PAIP-V, установленным в Мурманской области.

Об авторах

С. А. Шаракин

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова

Автор, ответственный за переписку.
Email: saraev.re17@physics.msu.ru
Москва, Россия

Р. Е. Сараев

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына МГУ имени М.В. Ломоносова; МГУ имени М.В. Ломоносова, Физический факультет

Email: saraev.re17@physics.msu.ru
Москва, Россия

Список литературы

  1. Adams J.H., Ahmad S., Albert J. et al. An evaluation of the exposure in nadir observation of the JEM‑EUSO mission // Astropart. Phys. 2013. V. 44. P. 76–90. https://doi.org/10.1016/j.astropartphys.2013.01.008
  2. Casolino M., Klimov P., Piotrowski L. Observation of ultra high energy cosmic rays from space: Status and perspectives // Progress of Theoretical and Experimental Physics. 2017. V. 2017. Iss. 12. https://doi.org/10.1093/ptep/ptx169
  3. Bertaina M., Biktemerova S., Bittermann K. et al. Performance and air‑shower reconstruction techniques for the JEM‑EUSO mission // Advances in Space Research. 2014. V. 53. Iss. 10. P. 1515–1535. https://doi.org/10.1016/j.asr.2014.02.018
  4. Barghini D., Bertaina M., Cellino A. et al. UV telescope TUS on board Lomonosov satellite: Selected results of the mission // Advances in Space Research. 2022. V. 70. Iss. 9. P. 2734–2749. https://doi.org/10.1016/j.asr.2021.11.044
  5. Adams J.H., Ahmad S., Albert J.N. et al. Science of atmospheric phenomena with JEM‑EUSO // ExP. Astron. 2015. V. 40. Iss. 1. P. 239–251. https://doi.org/10.1007/s10686-014-9431-0
  6. Bacholle S., Barrillon P., Battisti M. et al. Mini‑EUSO mission to study earth UV emissions on board the ISS // Astrophysical J. Supplement Series. American Astronomical Society. 2021. V. 253. Iss. 2. P. 36. https://doi.org/10.3847/1538-4365/abd93d
  7. Abdellaoui G., Abe S., Adams J.H. et al. EUSO‑TA – first results from a ground‑based EUSO telescope // Astroparticle Physics. 2018. V. 102. P. 98–111. https://doi.org/10.1016/j.astropartphys.2018.05.007
  8. Adams J.H., Ahmad S., Allard D. et al. A Review of the EUSO‑Balloon Pathfinder for the JEM‑EUSO Program // Space Sci. Rev. 2022. V. 218. Iss. 1. Art. ID 3. https://doi.org/10.1007/s11214-022-00870-x
  9. Abdellaoui G., Abe S., Adams J.H. et al. EUSO‑SPB1 mission and science // Astroparticle Physics. 2024. V. 154. Art. ID 102891. https://doi.org/10.1016/j.astropartphys.2023.102891
  10. Klimov P., Battisti M., Belov A. et al. Status of the k‑EUSO orbital detector of ultra‑high energy cosmic rays // Universe. 2022. V. 8. Iss. 2. https://doi.org/10.3390/universe8020088
  11. POEMMA Collaboration, Olinto A.V., Krizmanic J., Adams J.H. et al. The POEMMA (Probe of Extreme Multi‑Messenger Astrophysics) Observatory // J. Cosmology & Astroparticle Physics. 2021. Iss. 06. Art. ID 007. https://doi.org/10.1088/1475-7516/2021/06/007
  12. Casolino M., Barghini D., Battisti M. et al. Observation of night‑time emissions of the Earth in the near UV range from the International Space Station with the mini‑EUSO detector // Remote Sensing of Environment. 2023. V. 284. Art. ID 113336. https://doi.org/10.1016/j.rse.2022.113336
  13. Khrenov B.A., Garipov G.K., Kaznacheeva M.A. et al. An extensive‑air‑shower‑like event registered with the TUS orbital detector // J. Cosmology & Astroparticle Physics. 2020. V. 2020. Iss. 03. Art. ID 033. https://doi.org/10.1088/1475-7516/2020/03/033
  14. Sharakin S., Hernandez O.I.R. Kinematics reconstruction of the EAS‑like events registered by the TUS detector // J. Instrumentation. IOP Publishing. 2021. V. 16. Iss. 07. Art. ID T07013. https://doi.org/10.1088/1748-0221/16/07/T07013
  15. Barghini D., Battisti M., Belov A. et al. Observation of meteors from space with the mini–EUSO detector on board the International Space Station // Astronomy & Astrophysics. 2024. V. 49236. https://doi.org/10.1051/0004-6361/202449236
  16. Ruiz‑Hernandez O.I., Sharakin S., Klimov P. et al. Meteors observations by the orbital telescope TUS // Planetary and Space Science. 2022. V. 218. Art. ID 105507. https://doi.org/10.1016/j.pss.2022.105507
  17. Ceplecha Z. Geometric, Dynamic, Orbital and Photometric Data on Meteoroids from Photographic Fireball Networks // Bulletin of the Astronomical Institutes of Czechoslovakia. 1987. V. 38. Art. ID 222.
  18. Borovička J. The Comparison of Two Methods of Determining Meteor Trajectories from Photographs // Bulletin of the Astronomical Institutes of Czechoslovakia. 1990. V. 41. Art. ID 391.
  19. Gural P.S. A new method of meteor trajectory determination applied to multiple unsynchronized video cameras // Meteoritics & Planetary Science. 2012. V. 47. Iss. 9. P. 1405–1418. https://doi.org/10.1111/j.1945-5100.2012.01402.x
  20. Vida D., Gural P.S., Brown P.G. et al. Estimating trajectories of meteors: An observational Monte Carlo approach – I. Theory // Monthly Notices of the Royal Astronomical Society. 2019. V. 491. Iss. 2. P. 2688–2705. https://doi.org/10.1093/mnras/stz3160
  21. Sansom E.K., Rutten M.G., Bland P.A. Analyzing meteoroid flights using particle filters // Astronomical J. The American Astronomical Society. 2017. V. 153. Iss. 2. Art. ID 87. https://doi.org/10.3847/1538-3881/153/2/87
  22. Jaynes E.T. Probability Theory: The Logic of Science. Cambridge University Press; Annotated edition (9 June 2003), 2003.
  23. Sivia D., Skilling J. Data Analysis: A Bayesian Tutorial. OUP Oxford, 2006.
  24. Dyk D.A. van, Kang H. Highly Structured Models for Spectral Analysis in High‑Energy Astrophysics // Statistical Science. Institute of Mathematical Statistics. 2004. V. 19. Iss. 2. P. 275–293. https://doi.org/10.1214/088342304000000314
  25. Connors A., Esch D.N., Freeman P. et al. Deconvolution in high‑energy astrophysics: science, instrumentation, and methods // Bayesian Analysis. International Society for Bayesian Analysis. 2006. V. 1. Iss. 2. P. 189–235. https://doi.org/10.1214/06-BA107
  26. Gregory P.C., Loredo T.J. A New Method for the Detection of a Periodic Signal of Unknown Shape and Period // Astrophysical J. 1992. V. 398. Art. ID 146. https://doi.org/10.1086/171844
  27. Loredo T.J., Berger J.O., Chernoff D.F. et al. Bayesian methods for analysis and adaptive scheduling of exoplanet observations // Statistical Methodology. 2012. V. 9. Iss. 1. P. 101–114. https://doi.org/10.1016/j.stamet.2011.07.005
  28. Loredo T.J., Hendry M.A. Multilevel and hierarchical Bayesian modeling of cosmic populations // arXiv: Instrumentation and Methods for Astrophysics. 2019. https://doi.org/10.48550/arXiv.1911.12337
  29. Klimov P., Sharakin S., Belov A. et al. System of imaging photometers for upper atmospheric phenomena study in the Arctic region // Atmosphere. MDPI AG. 2022. V. 13. Iss. 10. Art. ID 1572. https://doi.org/10.3390/atmos13101572
  30. Berat C., Bottai S., De Marco D. et al. Full simulation of space‑based extensive air showers detectors with ESAF // Astroparticle Physics. 2010. V. 33. P. 221–247. https://doi.org/10.1016/j.astropartphys.2010.02.005
  31. Biktemerova S., Guzman A., Mernik T. Performances of JEM‑EUSO: angular reconstruction // Exper. Astron. 2015. V. 40. Iss. 1. P. 153–177. https://doi.org/10.1007/s10686-013-9371-0
  32. Abe S., Adams J.R. Jr., Allard D. et al. Developments and results in the context of the JEM‑EUSO program obtained with the ESAF simulation and analysis framework // Eur. Phys. J. C. 2023. V. 83. Iss. 11. Art. ID 1028. https://doi.org/10.1140/epjc/s10052-023-12090-w
  33. Sharakin S., Barghini D., Battisti M. ELVES measurements in the “UV atmosphere” (mini‑EUSO) experiment onboard the ISS and their reconstruction // Cosmic Research. 2024. V. 62. Iss. 10. P. 330–338. https://doi.org/10.1134/S0010952524600379
  34. Ceplecha Z., Revelle D.O. Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere // Meteoritics & Planetary Science. 2005. V. 40. Iss. 1. P. 35–54. https://doi.org/10.1111/j.1945-5100.2005.tb00363.x
  35. Loredo T.J., Wolpert R.L. Bayesian inference: More than Bayes’s theorem // Frontiers in Astronomy and Space Sciences. 2024. V. 11. Art. ID 1326926. https://doi.org/10.3389/fspas.2024.1326926
  36. Anderson J., King I.R. Toward high‑precision astrometry with WFPC2. I. Deriving an accurate point‑spread function // Publications of the Astronomical Society of the Pacific. The University of Chicago Press. 2000. V. 112. Iss. 776. Art ID 1360. https://doi.org/10.1086/316632
  37. Martin O. Bayesian Analysis with Python: Introduction to statistical modeling and probabilistic programming using PyMC3 and ArviZ. 2nd ed. Packt Publishing, 2018.
  38. Tran D., Wang H., Torresani L. et al. A closer look at spatiotemporal convolutions for action recognition // CoRR. 2017. V. abs/1711.11248. http://arxiv.org/abs/1711.11248
  39. Hajduková Jr. M., Koten P., Kornoš L. et al. Meteoroid orbits from video meteors. The case of the Geminids stream // Planetary and Space Science. 2017. V. 143. P. 89–98. https://doi.org/10.1016/j.pss.2017.01.004
  40. Neslušan L. A summary of the research of Geminid meteoroid stream // Contributions of the Astronomical Observatory Skalnate Pleso. 2015. V. 45. Iss. 1. P. 60–82.
  41. Koten P., Borovička J., Spurný P. et al. Atmospheric trajectories and light curves of shower meteors // Astronomy & Astrophysics. 12 AD. V. 428. P. 683–690. https://doi.org/10.1051/0004-6361:20041485
  42. Jenniskens P., Nenon Q., Albers J. et al. The established meteor showers as observed by CAMS // Icarus. 2016. V. 266. P. 331–354. https://doi.org/10.1016/j.icarus.2015.09.013
  43. Sharakin S.A., Saraev R.E. Probabilistic programming methods for reconstruction of multichannel imaging detector events: ELVES and TRACK // Moscow University Physics Bulletin. 2024. V. 79. P. S772–S780. https://doi.org/10.3103/S0027134924702230
  44. Pecina P., Koten P. On the theory of light curves of video‑meteors // Astronomy & Astrophysics. 2009. V. 499. Iss. 1. P. 313–320. https://doi.org/10.1051/0004-6361/200811503
  45. Jenniskens P., Gural P.S., Dynneson L. et al. CAMS: Cameras for all‑sky meteor surveillance to establish minor meteor showers // Icarus. 2011. V. 216. Iss. 1. P. 40–61. https://doi.org/10.1016/j.icarus.2011.08.012
  46. Chen H., Rambaux N., Vaubaillon J. Accuracy of meteor positioning from space‑ and ground‑based observations // Astronomy & Astrophysics. 2020. V. 642. Art. ID L11. https://doi.org/10.1051/0004-6361/202039014
  47. Arulampalam M.S., Maskell S., Gordon N. et al. Gaussian Bayesian tracking // IEEE Transactions on Signal Processing. 2002. V. 50. Iss. 2. P. 174–188. https://doi.org/10.1109/78.978374
  48. Sansom E.K., Jansen‑Sturgeon T., Rutten M.G. et al. 3D meteoroid trajectories // Icarus. 2019. V. 321. P. 388–406. https://doi.org/10.1016/j.icarus.2018.09.026
  49. Cranmer K., Brehmer J., Louppe G. The frontier of simulation‑based inference // Proc. Natl. Acad. Sci. U.S.A. 2020. V. 117(48). P. 30055–30062. https://doi.org/10.1073/pnas.1912789117
  50. Vida D., Brown P.G., Campbell‑Brown M. Modelling the measurement accuracy of pre‑atmosphere velocities of meteoroids // Monthly Notices of the Royal Astronomical Society. 2018. V. 479. Iss. 4. P. 4307–4319. https://doi.org/10.1093/mnras/sty1841

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025