Synthesis of nickel nanodiscs and modification of shells of polyelectrolyte microcapsules with them

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Magnetic nickel nanoparticles, especially of anisotropic shape, are increasingly attracting the attention of researchers in the field of biomedicine. In this work, magnetic nickel nanodiscs have been synthesized to modify the shells of polyelectrolyte capsules in order to further create new agents for theranostics based on such a nanocomposite system. To obtain nickel nanoparticles in the form of nanodiscs, the method of alternating electrodeposition of metals in the pores of a polymer track membrane was used. Nanowires with alternating layers of copper and nickel were synthesized, and nickel nanodiscs were isolated by selective etching of copper. The magnetic properties of the nanodiscs were investigated by vibrational magnetometry of an array of nanowires in a polymer matrix. The selected disks were studied by dynamic light scattering, electron microscopy, and small-angle X-ray scattering. The possibility of including nickel nanodiscs in the shells of polyelectrolyte capsules by adsorption on a polycation layer followed by application of a polyanion is demonstrated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Sarukhanova

National Research Center “Kurchatov Institute”

Хат алмасуға жауапты Автор.
Email: saruhanova.vika@yandex.ru
Ресей, Moscow

I. Doludenko

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow

D. Khairetdinova

National Research Center “Kurchatov Institute”; National University of Science and Technology “MISIS”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow; Moscow

V. Volkov

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow

A. Bakirov

National Research Center “Kurchatov Institute”; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: saruhanova.vika@yandex.ru
Ресей, Moscow; Moscow

Y. Grigoriev

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow

D. Khmelenin

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow

A. Mikheev

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow

T. Bukreeva

National Research Center “Kurchatov Institute”

Email: saruhanova.vika@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Rezaei B., Yari P., Sanders S.M. et al. // Small. 2024. V. 20. Р. 2304848. https://doi.org/10.1002/smll.202304848
  2. Ullah Khan A., Chen L., Ge G. // Inorg. Chem. Commun. 2021. V. 134. Р. 108995. https://doi.org/10.1016/j.inoche.2021.108995
  3. Materón E.M., Miyazaki C.M., Carr O. et al. // Appl. Surf. Sci. Adv. 2021. V. 6. Р. 100163. https://doi.org/10.1016/j.apsadv.2021.100163
  4. Nuru-Deen Jaji, Hooi Ling Lee, Mohd Hazwan Hussin et al. // Nanotechnol. Rev. 2020. V. 9. P. 1456. https://doi.org/10.1515/ntrev-2020-0109
  5. Bian Z., Das S., Wai M.H. et al. // ChemPhysChem. 2017. V. 18. № 22. P. 3117. https://doi.org/10.1002/cphc.201700529
  6. Gahlawat G., Choudhury A.R. // RSC Adv. 2019. V. 9. № 23. P. 12944. https://doi.org/10.1039/c8ra10483b
  7. Sudhasree S., Shakila Banu A., Brindha P., Kurian G.A. // Toxicol. Env. Chem. 2014. V. 96 (5). P. 743. https://doi.org/10.1080/02772248.2014.923148
  8. Makarov V., Love A., Sinitsyna O. et al. // Acta Nat. 2014. V. 6. № 1. P. 20. https://doi.org/10.32607/20758251-2014-6-1-35-44
  9. Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications / Ed. Vazquez M. Elsevier, 2015. P. 962. https://doi.org/10.1016/b978-0-08-102832-2.09989-8
  10. Жигалина О.М., Долуденко И.М., Хмеленин Д.Н. и др. // Кристаллография. 2018. Т. 63. № 3. С. 455. https://doi.org/10.1134/S1063774518030379
  11. Загорский Д.Л., Долуденко И.М., Черкасов Д.А. и др. // ФТТ. 2019. Т. 61. Вып. 9. С. 1682. https://doi.org/10.1134/S1063783419090282
  12. Yao H., Xie L., Cheng Y. et al. // Mater. Des. 2017. V. 123. № 5. P. 165. https://doi.org/10.1016/j.matdes.2017.03.041
  13. Долуденко И.М., Михеев А.В., Бурмистров И.А. и др. // ЖТФ. 2020. Т. 90. Вып. 9. С. 1435. https://doi.org/10.1134/S1063784220090121
  14. Kruk T., Chojnacka-Górka K., Kolasińska-Sojka M., Zapotoczny S. // Adv. Colloid Interface Sci. 2022. V. 310. Р. 102773. https://doi.org/10.1016/j.cis.2022.102773
  15. Timin A.S., Gao H., Voronin D.V. et al. // Adv. Mater. Interfaces. 2017. V. 4. № 1. P. 1600338. https://doi.org/10.1002/admi.201600338
  16. Gorin D.A., Portnov S.A., Inozemtseva O.A. et al. // Phys. Chem. Chem. Phys. 2008. V. 10. P. 6899. https://doi.org/10.1039/b809696a
  17. Burmistrov I.A., Veselov M.M., Mikheev A.V. et al. // Pharmaceutics. 2022. V. 14. Р. 65. https://doi.org/10.3390/pharmaceutics14010065
  18. Lyubutin I.S., Starchikov S.S., Bukreeva T.V. et al. // Mater. Sci. Eng. C. 2014. V. 45. P. 225. https://doi.org/10.1016/j.msec.2014.09.017
  19. Sukhorukov G.B., Volodkin D.V., Gunther A.M. et al. // J. Mater. Chem. 2004. V. 14. P. 2073. https://doi.org/10.1039/B402617A
  20. Peters G.S., Zakharchenko O.A., Konarev P.V. et al. // Nucl. Instrum. Methods Phys. Res. А. 2019. V. 945. Р. 162616. https://doi.org/10.1016/ 162616
  21. Hammersley A.P. // J. Appl. Cryst. 2016. V. 49. P. 646. https://doi.org/10.1107/S1600576716000455
  22. Manalastas-Cantos K., Konarev P.V., Hajizadeh N.R. et al. // J. Appl. Cryst. 2021. V. 54. P. 343. https://doi.org/10.1107/S1600576720013412
  23. Svergun D.I., Konarev P.V., Volkov V.V. et al. // J. Chem. Phys. 2000. V. 113. P. 1651. https://doi.org/10.1063/1.481954
  24. Бизяев Д.А., Хайретдинова Д.Р., Загорский Д.Л. и др. // Физика металлов и металловедение. 2023. Т. 124. С. 717. https://doi.org/10.31857/S0015323023600545
  25. Anikin A.A., Shumskaya E.E., Bedin S.A. et al. // Bull. Russ. Acad. Sci.: Phys. 2024. V. 88. № 4. P. 1010. https://doi.org/10.1134/S1062873824706998

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Hysteresis loops for nanowire samples with a given nickel layer thickness of 50 nm for two field directions: in the plane of the sample (1) and parallel to its normal (2).

Жүктеу (153KB)
3. Fig. 2. Distribution of synthesized particles by size according to DLS data.

Жүктеу (69KB)
4. Fig. 3. TEM image of nickel nanoparticles (a) and their image obtained using a ring dark-field detector (b).

Жүктеу (203KB)
5. Fig. 4. Volume distributions of particles by the radii of inhomogeneities in the spherical approximation of their shape according to SAXS data (a), particle concentration in suspension: 0.05 (1), 0.1 (2), 0.2 (3) μg/ml. Solid lines correspond to the distribution of the component with a larger size, dashed lines – with a smaller size. Comparison of experimental data with model intensities calculated for the distributions in the figure (a) taking into account the not shown distributions of fractions of small inhomogeneities (b). The intensity curves are shifted vertically for better visualization.

Жүктеу (165KB)
6. Fig. 5. TEM image of microcapsules modified with nanodisks (a) and their image obtained using a ring dark-field detector (b), as well as distribution maps of nickel (c), carbon (d), oxygen (g), and sulfur (e).

Жүктеу (334KB)

© Russian Academy of Sciences, 2025