Structure and lithological characteristics of the Upper Jurassic Shalbuzdag reef massif (Northeastern Caucasus)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The structure of the Upper Jurassic reef complex of the Shalbuzdag mountain range (southern Dagestan) is considered. It was the western segment of the Shahdag zone of the barrier reef, which separated zones with different types of sedimentation: to the north of it was the area of shallow sedimentation of the carbonate platform of the Greater Caucasus, to the south was the Dibrara trough, where thick strata of carbonate and terrigenous flysch accumulated. In terms of the reef massif has an approximately ring-shaped shape with a diameter of about 4 km. There are several large reef structures on its territory, in the center of which there is a biogenic carbonate dome-shaped core surrounded by a plume of sedimentary layers lying relatively steeply. There are also numerous smaller formations, bioherms, ranging in size from a few meters to the first tens of meters. Reef-forming fauna is represented by corals, gastropods, brachiopods, various types of algae, etc. The inter-reef space is filled with sedimentary rocks, which are mainly products of denudation of reef structures. Gradation cyclicity is often observed in these strata. In the structure of the western edge of the massif, according to the ratio of biogenic and sedimentary deposits, at least 3 large impulses in its formation can be distinguished. The factors that most influenced the formation of the Shalbuzdag reef complex should probably be considered 1) climate changes from humid in the Middle Jurassic to arid in the Late Jurassic, 2) proximity to the transition zone between areas with different tectonic development regimes and sedimentation types, 3) sea level fluctuations of various orders.

Texto integral

Acesso é fechado

Sobre autores

Yu. Gavrilov

Geological Institute RAS

Autor responsável pela correspondência
Email: yugavrilov@gmail.com
Rússia, Pyzhevsky lane, 7, bld. 1, Moscow, 119017

Bibliografia

  1. Антошкина А.И. Рифообразование в палеозое (север Урала и сопредельные области). Екатеринбург: УрО РАН, 2003. 304 с.
  2. Беленицкая Г.А., Соболев Н.Н., Петров О.В. и др. Рифовые, соленосные и черносланцевые формации России // Под ред. Г.А. Беленицкой, О.В. Петрова, Н.Н. Соболева. СПб.: Изд-во ВСЕГЕИ, 2015. 624 с. (Труды ВСЕГЕИ. Новая серия. Т. 355)
  3. Бендукидзе Н.С. Позднеюрские кораллы рифогенных отложений Кавказа и Крыма. Тбилиси: Мецниереба, 1982. 166 с.
  4. Богданович К.И. Два пересечения Главного Кавказского хребта // Труды Геол. Комитета. 1902. Т. XIX. 209 с.
  5. Бойко Н.И. Литолого-фациальные особенности и условия образования норийско-рэтской карбонатной формации Северного Кавказа // Современные проблемы геологии, геофизики и геоэкологии Северного Кавказа. Т. XII / Под ред. И.А. Керимова, В.А. Широковой. М.: ИИЕТ РАН, 2022. С. 31–35.
  6. Бойко Н.И., Пушкарский Е.М. Литолого-фациальные особенности и условия образования норийских отложений в Западном Предкавказье // Литология и полез. ископаемые. 1983. № 5. С. 61–70.
  7. Бурштар М.С., Арбатов А.А., Чернобров Б.С. Связь верхнеюрских рифовых массивов Кавказа с зонами разломов // Геотектоника. 1967. № 3. С. 49–54.
  8. Габдуллин Р.Р., Самарин Е.Н., Фрейман С.И., Яковишина Е.В. Характеристика и условия формирования келловейско-верхнеюрских отложений зоны Ахцу (Краснодарский край) // Вестник Московского университета. Сер. 4. Геология. 2014. № 3. С. 15–26.
  9. Гаврилов Ю.О. Архитектура южной краевой зоны верхнеюрско-валанжинской карбонатной платформы северо-восточного Кавказа (Дагестан, Шахдагский массив) // Литология и полез. ископаемые. 2018. № 6. С. 507–520.
  10. Гаврилов Ю.О. Динамика формирования юрского терригенного комплекса Большого Кавказа: седиментология, геохимия, постдиагенетические преобразования. М.: ГЕОС, 2005. 301 с.
  11. Геология СССР. Т. 9. Северный Кавказ. Часть 1. Геологическое описание. М.: Недра, 1968. 760 с.
  12. Жемчугова В.А. Верхний палеозой Печорского бассейна (строение, условия образования, нефтегазоносность). Сыктывкар: Коми республиканское изд-во, 1998. 160 с.
  13. Жемчугова В.А. Резервуарная седиментология карбонатных отложений. М.: ООО “ЕАГЕ Геомодель”, 2014. 232 с.
  14. Кабанова З.В. О распределении верхнеюрских рифовых отложений в Крымско-Кавказской геосинклинальной области // Изв. АН СССР. Сер. геол. 1966. № 3. С. 117–122.
  15. Кабанова З.В., Леонов Ю.Г., Панов Д.И. Тектоническое развитие Центрального и Западного Кавказа в юрское время // Бюлл. МОИП. Отд. геол. 1969. Т. 44. Вып. 3. С. 42–57.
  16. Конюхов И.А., Комардинкина Г.Н. К вопросу о региональной литологии верхнеюрских карбонатных отложений Северо-Восточного Кавказа // Докл. АН СССР. 1956. Т. 111. № 6. С. 1318–1321.
  17. Кузнецов В.Г., Сухы В., Фойгт Т. О строении и условиях формирования титонских отложений разреза Балта (Северная Осетия) // Литология и полез. ископаемые. 1992. № 3. С. 120–127.
  18. Леонов Г.П., Логинова Г.А. Основные черты геологического развития Дагестана в эпоху верхней юры и валанжина // Ученые записки МГУ. Сер. геол. 1956. Вып. 176. С. 87–103.
  19. Леонов Ю.Г. Киммерийская и позднеальпийская тектоника Большого Кавказа // Большой Кавказ в альпийскую эпоху / Под ред. Ю.Г. Леонова. М.: ГЕОС, 2007. С. 317–340.
  20. Леонов Ю.Г. Ранне- и среднеюрские фазы поднятия и складкообразования Большого Кавказа // Геотектоника. 1969. № 6. С. 31–38.
  21. Ренгартен В.П. О фауне меловых и титонских отложений юго-восточного Дагестана // Изв. Геол. Комитета. 1909. Т. XXVIII. № 9. С. 637–690.
  22. Сианисян С.С., Минин А.И., Мосякин А.Ю. Биогермные массивы верхней юры северного борта Терско-Каспийского прогиба // Бюлл. МОИП. Отд. геол. 1992. Т. 67. Вып. 6. С. 48–53.
  23. Стор М.А., Птецов С.И., Панина Л.В. и др. Методика прогнозирования рифовых построек в условиях Терско-Каспийского краевого прогиба // Бюлл. МОИП. Отд. геол. 1989. Т. 61. Вып. 5. С. 47–52.
  24. Хаин В.Е. Геотектоническое развитие Юго-Восточного Кавказа. Баку: Азнефтеиздат, 1950. 224 с.
  25. Юра Кавказа / Под ред. К.О. Ростовцева. СПб.: Наука, 1992. 184 с.
  26. Ясаманов Н.А. Ландшафтно-климатические условия юры, мела и палеогена Юга СССР. М.: Недра, 1978. 224 с.
  27. Antoshkina A.I. Organic buildups and reefs on the Palaeozoic carbonate platform margin, Pechora Urals, Russia // Sediment. Geology. 1998. № 118. P. 187–211.
  28. Bosellini A. Progradation geometries of carbonate platforms: examples from the Triassic of the Dolomites, northern Italy // Sedimentology. 1984. V. 31. P. 1–24.
  29. Funk H.P., Föllmi K.B., Mohr H. Evolution of the Tithonian-Aptian carbonate platform along the northern Tethyan margin, eastern Helvetic Alps // Cretaceous Carbonate Platforms / Eds T. Simo, R.W. Scott, J.-P. Masse // AAPG Memoir. 1993. V. 56. P. 387–407.
  30. Goldhammer R.K., Harris M.T. Eustatic controls on the stratigraphy and geometry of the Latemar buildup (Middle Triassic), the Dolomites of northern Italy // Controls on carbonate platform and basin development / Eds P.D. Crevello et al. // SEPM Spec. Publ. 1989. V. 44. P. 323–338.
  31. Keim L., Schlager W. Quantitative compositional analysis of a Triassic carbonate platform (Southern Alps, Italy) // Sediment. Geology. 2001. V. 139. P. 261–283.
  32. Kendall C.G.St.C., Schlager W. Carbonate and relative changes in a sea level // Mar. Geol. 1981. V. 44. P. 181–212.
  33. Kenter J.A.M. Carbonate platform flanks: slope angle and sediment fabric // Sedimentology. 1990. V. 37. P. 777–794.
  34. Kuznetsov V.G. Late Jurassic–Early Cretaceous Carbonate Platform in the Northern Caucasus and Precaucasus // In Cretaceous Carbonate Platforms / Eds T. Simo, R.W. Scott, J.-P. Masse // AAPG Memoir. 1993. V. 56. P. 455–463.
  35. Pomar L. Reef geometries, erosion surfaces and high-frequency sea-level changes, upper Miocene reef complex, Mallorca, Spain // Sedimentology. 1991. V. 38. P. 243–270.
  36. Pomar L. Types of carbonate platforms: a genetic approach // Basin Res. 2001. V. 13. P. 313–334.
  37. Schlager W. Carbonate sedimentology and sequence stratigraphy // SEPM Concepts Sedimentol. Paleontol. 2005. V. 8. P. 104–146.
  38. Schlager W., Reijmer J.J.G., Droxler A. Highstand shedding of carbonate platform // J. Sed. Res. 1994. V. 3. P. 270–281.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Location of the Shalbuzdag mountain range in the structure of the Greater Caucasus. a – location of the Shalbuzdag massif on the relief map of the Caucasus; b, c – reefogenic mountain ranges of the western part of the Shahdag barrier reef zone (b – view from space, c – view from an airplane): b – Mount Shalbuzdag (1), Mount Shahdag (2), Mount Heydar (3); d – contour of the modern structure of the Shalbuzdag mountain range (view from space, GoogleEarth data).

Baixar (746KB)
3. Fig. 2. Reef massif of Mount Shalbuzdag. Views of the massif from different directions: a – from the north, b – from the east, c – from the south, view from the west – see Fig. 10.

Baixar (1MB)
4. Fig. 3. Ring reef structures within the Shalbuzdag massif. The largest reef structures are marked with arrows.

Baixar (1MB)
5. Fig. 4. Bioherm structures of the Shalbuzdag reef complex area (α – biogenic core of the bioherm, β – layers bordering the central part of the bioherm structure (of sedimentary or biogenic origin). a–k – bioherms of various morphologies on the territory of the reef massif; l, m – bioherm structures located outside the massif in the development zone of Middle Jurassic terrigenous deposits (southern slope of Mount Shalbuzdag); n – reef structures buried under the sedimentary cover in the eastern part of the massif.

Baixar (1MB)
6. Fig. 4. Continuation

Baixar (1MB)
7. Fig. 5. The nature of the occurrence and stratification of sediments in the strata of interreef filling. a–z – examples of sedimentary rock outcrops from different parts of the reef massif; the occurrence of layers ranges from horizontal to relatively steep (up to 45° and more), which is not associated with tectonic deformations; irregular bedding patterns are often observed, with layers being unevenly distributed along the strike to the point of wedging out.

Baixar (1MB)
8. Fig. 6. Various types of rocks that make up sedimentary series that fill the interreef space. a–c – cyclites with gradational texture; the lower elements of the cyclites are composed of coarse-grained breccia with large, unrounded fragments of biogenic limestones; g – sandstones with gentle cross-bedding; d, e – cyclic character of relatively fine-grained sediments with gradational texture.

Baixar (2MB)
9. Fig. 7. Carbonate rocks and the remains of reef-building organisms found in them. a, b – organogenic limestones with large inclusions of macrofauna; c, d, d – corals of different species; e – layer with numerous brachiopods; g – fragments of large crinoids; h – bivalves.

Baixar (2MB)
10. Fig. 8. Surfaces of layers with cracks of different morphology and origin. a – surface of layer with polygonal desiccation cracks and extended linear cracks cutting the entire rock unit, having a tectonic nature; b, c – polygonal desiccation cracks developed in a thin (first centimeters) calcareous surface layer; white spots on the surface of the layer are the remains of lichens.

Baixar (1MB)
11. Fig. 9. Bioherm structure with traces of paleokarst development. a – general view of the bioherm, b, c – karst depressions in the upper part of the structure, filled with sedimentary material colored brownish-red by iron hydroxides.

Baixar (1MB)
12. Fig. 10. Western end of the reef massif (with elements of its structure interpretation). a, c – photographs of the object with different types of lighting, which helps to identify the features of its structure, b – view of the northwestern edge of the reef massif. Numbers on the photographs: 1 – a pack of interbedded limestone and marl layers at the base of the Upper Jurassic strata, 2, 4 – dome-shaped lenses of dense biogenic limestones, 3, 5 – stratified sedimentary rock strata, the layers of which abut against limestone lenses, 6 – possibly another lens of limestones (?), crowning section J3.

Baixar (1MB)

Declaração de direitos autorais © Russian academy of sciences, 2025