Novel Samarium Cobaltate/Silicon Carbide Composite Catalyst for Dry Reforming of Methane into Synthesis Gas

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper describes a specifically developed novel samarium cobaltate/silicon carbide composite that transforms into a high-performance carbon-resistant catalyst for dry reforming of methane into syngas (DRM). This 30%SmCoO3/70%SiC composite without hydrogen prereduction was tested in DRM at atmospheric pressure and GHSV 15 L g–1 h–1 (of an equimolar CH4–CO2 mixture). During the test, the yields of hydrogen and carbon monoxide reached 92 and 91 mol %, respectively, at 900°C, and 20 and 28 mol % at 700°C. Using XRD, TGA, and SEM examination, zero carbonization of the catalyst surface was demonstrated. It was found that, in the course of DRM, the initial composite transformed into a material that contained silicon carbide, samarium silicate, and samarium oxide, as well as metallic cobalt nanoparticles (<20 nm).

作者简介

A. Loktev

Gubkin Russian State University of Oil and Gas (National Research University); Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: genchem@gubkin.ru
119991, Moscow, Russia; 119991, Moscow, Russia

V. Arkhipova

Gubkin Russian State University of Oil and Gas (National Research University)

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

M. Bykov

Faculty of Chemistry, Lomonosov Moscow State University

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. Sadovnikov

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

Email: petrochem@ips.ac.ru
119991, Moscow, Russia

A. Dedov

Gubkin Russian State University of Oil and Gas (National Research University); Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: petrochem@ips.ac.ru
119991, Moscow, Russia; 119991, Moscow, Russia

参考

  1. Holmen A. Direct conversion of methane to fuels and chemicals // Catal. Today. 2009. V. 142. P. 2-8. https://doi.org/10.1016/j.cattod.2009.01.004
  2. Dedov A.G. Materials and technologies for gas feedstock processing: challenges, prospects, and solutions // Herald of the Russian academy of sciences. 2016. V. 86. № 3. P. 234-241. doi: 10.1134/S1019331616030023
  3. Дедов А.Г. Материалы и технологии для переработки газового сырья: проблемы, перспективы, решения // Вестник Российской академии наук. 2016. Т. 86. № 5. С. 10-19. doi: 10.7868/S0869587316050054. 0.327.
  4. Elbadawi A.H., Ge L., Li Z., Liu S., Wang S., Zhu Z. Catalytic partial oxidation of methane to syngas: review of perovskite catalysts and membrane reactors. Catal. Rev. 2021. V. 63. P. 1-67. https://doi.org/10.1080/01614940.2020.1743420
  5. Moiseev I.I., Loktev A.S., Shlyakhtin O.A., Mazo G.N., Dedov A.G. New approaches to the design of nickel, cobalt, and nickel-cobalt catalysts for partial oxidation and dry reforming of methane to synthesis gas // Petrol. Chemistry. 2019. V. 59. P. S1-S20. https://doi.org/10.1134/S0965544119130115
  6. Alhassan M., Jalil A.A., Nabgan W., Hamid M.Y.S., Bahari M.B., Ikram M. Bibliometric studies and impediments to valorization of dry reforming of methane for hydrogen production // Fuel. 2022. V. 328. I. 125240. https://doi.org/10.1016/j.fuel.2022.125240
  7. Bhattar S., Abedin Md.A., Kanitkar S., Spivey J.J. A review on dry reforming of methane over perovskite derived catalysts // Catal. Today. 2021. V. 365. P. 2-23. https://doi.org/10.1016/j.cattod.2020.10.041
  8. Jang W.-J., Shim J.-O., Kim H.-M., Yoo S.-Y., Roh H.-S. A review on dry reforming of methane in aspect of catalytic properties // Catalysis Today. 2019. V. 324. P. 15-26. https://doi.org/10.1016/j.cattod.2018.07.032
  9. Zhang G., Liu J., Xu Y., Sun Y. A review of CH4-CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010-2017) // Intern. J. of Hydrogen Energy. 2018. V. 43. № 32. P. 15030-15054. https://doi.org/10.1016/j.ijhydene.2018.06.091
  10. Usman M., Wan Daud W.M.A., Abbas H.F. Dry reforming of methane: Influence of process parameters. A review // Renewable and Sustainable Energy Reviews. 2015. V. 45. P. 710-744. https://doi.org/10.1016/j.rser.2015.02.026
  11. Макарян И.А., Седов И.В., Никитин А.В., Арутюнов В.С. Современные подходы к получению водорода из углеводородного сырья // Научный журнал российского газового общества. 2020. № 1 (24). С. 50-68. ISSN: 2412-6497. eLIBRARY ID: 47224164.
  12. Teh L.P., Setiabudi H.D., Timmiati S.N., Aziz M.A.A., Annuar N.H.R., Ruslan N.N. Recent progress in ceria-based catalysts for the dry reforming of methane: A review // Chem. Engineering Science. 2021. V. 242. I. 116606. https://doi.org/10.1016/j.ces.2021.116606
  13. Yentekakis I.V., Panagiotopoulou P., Artemakis G. A review of recent efforts to promote dry reforming of methane (DRM) to syngas production via bimetallic catalyst formulations. Applied Catalysis B: Environmental. 2021. V. 296. I. 120210. https://doi.org/10.1016/j.apcatb.2021.120210
  14. Wang C., Wang Y., Chen M., Liang D., Yang Z., Cheng W., Tang Z., Wang J., Zhang H. Recent advances during CH4 dry reforming for syngas production: A mini review // Intern. J. of Hydrogen Energy. 2021. V. 46. № 7. P. 5852-5874. https://doi.org/10.1016/j.ijhydene.2020.10.240
  15. Yusuf M., Farooqi A.S., Keong L.K., Hellgardt K., Abdullah B. Contemporary trends in composite Ni-based catalysts for CO2 reforming of methane // Chem. Engineering Science. 2021. V. 229. I. 116072. https://doi.org/10.1016/j.ces.2020.116072
  16. Guharoy U., Reina T.R., Liu J., Sun Q., Gu S., Cai Q. A theoretical overview on the prevention of coking in dry reforming of methane using non-precious transition metal catalysts // J. of CO2 Utilization. 2021. V. 53. I. 101728. https://doi.org/10.1016/j.jcou.2021.101728
  17. Baharudin L., Rahmat N., Othman N.H., Shah N., Syed-Hassan S.S.A. Formation, control, and elimination of carbon on Ni-based catalyst during CO2 and CH4 conversion via dry reforming process: A review // J. of CO2 Utilization. 2022. V. 61. I. 102050. https://doi.org/10.1016/j.jcou.2022.102050
  18. Gao Y., Jiang J., Meng Y., Yan F., Aihemaiti A. A review of recent developments in hydrogen production via biogas dry reforming // Energy Conversion and Management. 2018. V. 171. P. 133-155. https://doi.org/10.1016/j.enconman.2018.05.083
  19. le Saché E., Reina T.R. Analysis of dry reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies // Progress in Energy and Combustion Science. 2022. V. 89. I. 100970. https://doi.org/10.1016/j.pecs.2021.100970
  20. Hambali H.U., Jalil A.A., Abdulrasheed A.A., Siang T.J., Gambo Y., Umar A.A. Zeolite and clay based catalysts for CO2 reforming of methane to syngas: A review // Intern. J. of Hydrogen Energy. 2022. V. 47. № 72. P. 30759-30787. https://doi.org/10.1016/j.ijhydene.2021.12.214
  21. Mortensen P.M., Dybkjær I. Industrial scale experience on steam reforming of CO2-rich gas // Applied Catalysis A: General. 2015. V. 495. P. 141-151. https://doi.org/10.1016/j.apcata.2015.02.022
  22. Teuner S.C., Neumann P., Linde F.V. Beitrage-Processing-CO through CO2 reforming: The calcor standard and calcor economy processes // Erdol Erdgas Kohle. 2001. V. 117. № 12. P. 580-582.
  23. Schulz L.A., Kahle L.C.S., Delgado K.H., Schunk S.A., Jentys A., Deutschmann O., Lercher J.A. On the coke deposition in dry reforming of methane at elevated pressures // Applied Catalysis A: General. 2015. V. 504. P. 599-607. https://doi.org/10.1016/j.apcata.2015.03.002
  24. Jang W.-J., Jeong D.-W., Shim J.-O., Kim H.-M., Roh H.-S., Son I.H., Lee S.J. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application // Applied Energy. 2016. V. 173. P. 80-91. https://doi.org/10.1016/j.apenergy.2016.04.006
  25. Horiuchi T., Sakuma K., Fukui T., Kubo Y., Osaki T., Mori T. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst // Applied Catalysis A: General. 1996. V. 144. № 1-2. P. 111-120. https://doi.org/10.1016/0926-860X(96)00100-7
  26. Gould T.D., Izar A., Weimer A.W., Falconer J.L., Medlin J.W. Stabilizing Ni Catalysts by molecular layer deposition for harsh, dry reforming conditions // ACS Catal. 2014. V. 4. P. 2714-2717. https://doi.org/10.1021/cs500809w
  27. Aw M.S., Zorko M., Djinović P., Pintar A. Insights into durable NiCo catalysts on β-SiC/CeZrO2 and γ-Al2O3/CeZrO2 advanced supports prepared from facile methods for CH4-CO2 dry reforming // Applied Catalysis B: Environmental. 2015. V. 164. P. 100-112. https://doi.org/10.1016/j.apcatb.2014.09.012
  28. Wang Y.-H., Liu H.-M., Xu B.-Q. Durable Ni/MgO catalysts for CO2 reforming of methane: activity and metal-support interaction // J. Mol. Catal. A Chem. 2009. V. 299. P. 44-52. https://doi.org/10.1016/j.molcata.2008.09.025
  29. Wang F., Han B., Zhang L., Xu L., Yu H., Shi W. CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon // Applied Catalysis B: Environmental. 2018. V. 235. P. 26-35. https://doi.org/10.1016/j.apcatb.2018.04.069
  30. Zhang Q., Zhang T., Shi Y., Zhao B., Wang M., Liu Q., Wang J., Long K., Duan Y., Ning P. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane // J. of CO2 Utilization. 2017. V. 17. P. 10-19. https://doi.org/10.1016/j.jcou.2016.11.002
  31. Chong C.C., Bukhari S.N., Cheng Y.W., Setiabudi H.D., Jalil A.A., Phalakornkule C. Robust Ni/Dendritic fibrous SBA-15 (Ni/DFSBA-15) for methane dry reforming: Effect of Ni loadings // Applied Catalysis A: General. 2019. V. 584. I. 117174. https://doi.org/10.1016/j.apcata.2019.117174
  32. Han K., Yu W., Xu L., Deng Z., Yu H., Wang F. Reducing carbon deposition and enhancing reaction stability by ceria for methane dry reforming over Ni@SiO2@CeO2 catalyst // Fuel. 2021. V. 291. I. 120182. https://doi.org/10.1016/j.fuel.2021.120182
  33. Wang D., Littlewood P., Marks T.J., Stair P.C., Weitz E. Coking can enhance product yields in the dry reforming of methane // ACS Catalysis. 2022. V. 12. № 14. P. 8352-8362
  34. Schrenk F., Lindenthal L., Drexler H., Urban G., Rameshan R., Summerer H., Berger T., Ruh T., Opitz A.K., Rameshan C. Impact of nanoparticle exsolution on dry reforming of methane: Improving catalytic activity by reductive pre-treatment of perovskite-type catalysts // Applied Catalysis B: Environmental. 2022. V. 318. I. 121886. https://doi.org/10.1016/j.apcatb.2022.121886
  35. Gavrikov A.V., Loktev A.S., Ilyukhin A.B., Mukhin I.E., Bykov M.A., Vorobei A.M., Parenago O.O., Cherednichenko K.A., Sadovnikov A.A., Dedov A.G. Partial oxidation of methane to syngas over SmCoO3-derived catalysts: the effect of the supercritical fluid assisted modification of the perovskite precursor // Intern. J. of Hydrogen Energy. 2023. V. 48. № 8. P. 2998-3012. https://doi.org/10.1016/j.ijhydene.2022.10.068
  36. Gavrikov A.V., Loktev A.S., Ilyukhin A.B., Mukhin I.E., Bykov M.A., Maslakov K.I., Vorobei A.M., Parenago O.O., Sadovnikov A.A., Dedov A.G. Supercritical fluid assisted modification combined with the resynthesis of SmCOO3 as effective tool to enhance long-term performance of SmCoO3-derived catalysts for dry reforming of methane to syngas // Dalton Transactions. 2022. V. 51. P. 18446-18461. https://doi.org/10.1039/D2DT03026H
  37. Westphalen G., Baldanza M.A.S., de Almeida, A.J., Salim V.M.M., da Silva M.A.P., da Silva V.T. Improvement of C-C coupling using SiC as a support of cobalt catalysts in Fischer Tropsch synthesis // Catal Lett. 2022. V. 152. P. 2056-2066.
  38. Guo Y., Zou J., Shi X., Rukundo P., Wang Z.-J. A Ni/CeO2-CDC-SiC catalyst with improved coke resistance in CO2 reforming of methane // ACS Sustain. Chem. Eng. 2017. V. 5. P. 2330-2338. https://doi.org/10.1021/acssuschemeng.6b02661
  39. Gavrikov A.V., Ilyukhin A.B., Belova E.V., Yapryntsev A.D., Dobrokhotova Z.V., Khrushcheva A.V., Efimov N.N. Rapid preparation of SmCoO3 perovskite via uncommon though efficient precursors: Composition matters! // Ceram. Int. 2020. V. 46. P. 13014-13024. https://doi.org/10.1016/j.ceramint.2020.02.071
  40. Loktev A.S., Arkhipova V.A., Bykov M.A., Sadovnikov A.A., Dedov A.G. Cobalt-samarium oxide composite as a novel high-performance catalyst for partial oxidation and dry reforming of methane into synthesis gas // Petrol. Chemistry. 2023. V. 63. P. 317-326 https://doi.org/10.1134/S0965544123010048
  41. Ma F., Chen Y., Lou H. Characterization of perovskite-type oxide catalysts RECoO3 by TPR // React. Kinet. Catal. Lett. 1986. V. 31. № 1. P. 47-53.
  42. Osazuwa O.U., Cheng C.K. Catalytic conversion of methane and carbon dioxide (greenhouse gases) into syngas over samarium-cobalt-trioxides perovskite catalyst // J. Clean Prod. 2017. V. 148. P. 202-211. https://doi.org/10.1016/j.jclepro.2017.01.177

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023