Spatial or temporal variation: What is more important to consider when estimating soil respiration rates at different scales of observation
- 作者: Karelin D.V.1, Sukhoveeva O.E.1, Zolotukhin A.N.2, Nikitin D.A.3
-
隶属关系:
- Institute of Geography, Russian Academy of Sciences
- Federal Agricultural Kursk Research Center
- Dokuchaev Soil Science Institute
- 期: 编号 11 (2025)
- 页面: 1484-1493
- 栏目: SOIL PHYSICS
- URL: https://journals.eco-vector.com/0032-180X/article/view/696649
- DOI: https://doi.org/10.7868/S3034561825110072
- ID: 696649
如何引用文章
详细
The data of field observations of soil respiration (SR), or CO2 efflux from soil, obtained over five years (2020–2024) in four regions of the European Russia (Republic of Chuvashia, Ryazan Oblast, Tula Oblast, Kursk Oblast) within the biome of broad-leaved forests and forest-steppe were analyzed. In each region, SR measurements were carried out in the same set of natural (forests, steppes) and agricultural (arable lands, hayfields, pastures) ecosystems. SR was estimated using portable infrared gas analyzers and static chamber method in 10-fold spatial replications at the peak of vegetation seasons. In the Kursk region, gas measurements were conducted in a more intensive mode (1–2 times per month) as part of year-round monitoring. The goal was to quantify the relative contributions of spatial and temporal variability of SR for different scales of observations, which allows to increase confidence in field estimates of SR for subsequent extrapolation to larger regions or forecast. Nonparametric PERMANOVA analysis of variance was used. At the scale of a year or biotope, the contribution of temporal variability (49–59.8%) to the total variance of SR significantly exceeds the contribution of spatial variability (5.4–9%). Change the spatio-temporal scale of observations to multi-year series and regional ecosystems reduces the contribution of temporal variability to 27%, and increases the contribution of spatial variability up to 23.2%. In general, at the scales considered, temporal variability appears to be more important for the overall variation of SR. This leads to the methodological recommendation to increase the frequency of assessments of intra-annual dynamics of SR rather than to increase the number of measurement points in local ecosystems.
作者简介
D. Karelin
Institute of Geography, Russian Academy of SciencesMoscow, 119017 Russia
O. Sukhoveeva
Institute of Geography, Russian Academy of Sciences
Email: olgasukhoveeva@gmail.com
Moscow, 119017 Russia
A. Zolotukhin
Federal Agricultural Kursk Research CenterKursk, 305021 Russia
D. Nikitin
Dokuchaev Soil Science InstituteMoscow, 119017 Russia
参考
- Карелин Д.В., Азовский А.И., Куманяев А.С., Замолодчиков Д.Г. Значение пространственного и временного масштаба при анализе факторов эмиссии СО2 из почвы в лесах Валдайской возвышенности // Лесоведение. 2019. № 1. C. 29–37. https://doi.org/10.1134/S0024114819010078
- Огуреева Г.Н., Леонова Н.Б., Микляева И.М., Бочарников М.В., Федосов В.Э., Мучник Е.Э, Урбанавичюс Г.П. и др. Биоразнообразие биомов России. Равнинные биомы. М.: ИГКЭ, 2020. 623 с.
- Anderson M.J., Gorley R.N., Clarke K.R., PERMANOVA+ for primer: Guide to software and statistical methods. Plymouth: PRIMER-e, 2008.
- Anderson M.J., Walsh D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? // Ecol. Monogr. 2013. V. 83. P. 557–574. https://doi.org/10.1890/12-2010.1
- Bond-Lamberty B., Ballantyne A., Berryman E., Fluet-Chouinard E., Jian J., Morris K.A., Rey A., Vargas R. Twenty years of progress, challenges, and opportunities in measuring and understanding soil respiration // J. Geophys. Res. G: Biogeosciences. 2024. V. 129. P. e2023JG007637. https://doi.org/10.1029/2023JG007637
- Bond–Lamberty B., Thomson A. Temperature associated increases in the global soil respiration record // Nature. 2010. V. 464. P. 579–582. https://doi.org/10.1038/nature08930
- Hashimoto S., Carvalhais N., Ito A., Migliavacca M., Nishina K., Reichstein M. Global spatiotemporal distribution of soil respiration modeled using a global database // Biogeosciences. 2015. V. 12. P. 4121–4132. https://doi.org/10.5194/bg-12-4121-2015
- Hashimoto S., Ito A., Nishina K. Divergent data-driven estimates of global soil respiration // Commun. Earth Environ. 2023. V. 4. P. 460. https://doi.org/10.1038/s43247-023-01136-2
- Huang N., Wang L., Song X.-P., Black T.A., Jassal R.S., Myneni R.B., Wu C., Wang L., Song W., Ji D., Yu S., Niu Z. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover // Sci. Advanc. 2020. V. 6. P. eabb8508. https://doi.org/10.1126/sciadv.abb8508
- Jiang J., Feng L., Hu J., Liu H., Zhu C., Chen B., Chen T. Global soil respiration predictions with associated uncertainties from different spatio-temporal data subsets // Ecol. Inform. 2024. V. 82. P. 102777. https://doi.org/10.1016/j.ecoinf.2024.102777
- Karelin D.V., Zolotukhin A.N., Ryzhkov O.V., Lunin V.N., Zamolodchikov D.G., Sukhoveeva O.E. The use of long-term soil respiration measurements for calculating the net carbon balance in ecosystems of the central chernozemic region // Eurasian Soil Science. 2024. V. 57. P. 1638–1649. https://doi.org/10.1134/S1064229324601318
- Kuzyakov Y., Blagodatskaya E. Microbial hotspots and hot moments in soil: Concept & review // Soil Biol. Biochem. 2015. V. 83. P. 184–199. https://doi.org/10.1016/j.soilbio.2015.01.025.
- Lankreijer H., Janssens I., Buchmann N., Longdoz B., Epron D., Dore S. Measurement of soil respiration, in: Kröner, F., Valentini, R. (Eds.). Ecological Studies. 2003. 163 Fluxes in Carbon, Water and Energy of European Forests. Berlin: Springer-Verlag, P. 37–54. https://doi.org/10.1007/978-3-662-05171-9_3
- Lei J., Guo X., Zeng Y., Zhou J., Gao Q., Yang Y. Temporal changes in global soil respiration since 1987 // Nature Comm. 2021. V. 12. P. 403. https://doi.org/10.1038/s41467-020-20616-z
- Leon E., Vargas R., Bullock S., Lopez E., Panosso A.R., La Scala N. Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem // Soil Biol. Biochem. 2014. V. 77. P. 12–21. https://doi.org/10.1016/j.soilbio.2014.05.029.
- Martin J.G., Bolstad P.V. Variation of soil respiration at three spatial scales: Components within measurements, intra-site variation and patterns on the landscape // Soil Biol. Biochem. 2009. V. 41. P. 530–543. https://doi.org/10.1016/j.soilbio.2008.12.012
- Niu S., Chen W., Liáng L.L., Sierra C.A., Xia J., Wang S., Heskel M. et al. Temperature responses of ecosystem respiration // Nat. Rev. Earth Environ. 2024. V. 5. P. 559–571. https://doi.org/10.1038/s43017-024-00569-3
- Sukhoveeva O., Karelin D., Lebedeva T., Pochikalov A., Ryzhkov O., Suvorov G., Zolotukhin A. Greenhouse gases fluxes and carbon cycle in agroecosystems under humid continental climate conditions // Agriculture, Ecosyst. Environ. 2023. V. 352. P. 108502. https://doi.org/10.1016/j.agee.2023.108502
- Wang X., Ren T. Spatial and temporal variability of soil respiration between soybean crop rows as measured continuously over a growing season // Sustainability. 2017. V. 9. P. 436. https://doi.org/10.3390/su9030436
- Yao Y., Ciais P., Viovy N., Li W., Cresto-Aleina F., Yang H., Joetzjer E., Bond-Lamberty B. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter-annual variability // Glob. Biogeochem. Cycles. 2021. V. 35. P. e2020GB006918. https://doi.org/10.1029/2020GB006918
- Yu J.C., Chiang P.N., Lai Y.J. Seasonal and spatial variation in soil respiration in afforested sugarcane fields on Entisols, Taiwan // Geoderma Reg. 2021. V. 26. P. e00421. https://doi.org/10.1016/j.geodrs.2021.e00421
补充文件


