On the physical regularities of the instability of charged spheroidal droplets

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Asymptotic methods study the conditions for the implementation of electrostatic instability of oscillating highly charged flattened and elongated spheroidal droplets depending on the values of their eccentricities. It turned out that the electrostatic stability of the flattened spheroidal droplet with respect to axisymmetric deformations increases with an increase in eccentricity, and the elongated spheroidal droplet decreases. It is shown that the electrostatic instability of the flattened charged droplet itself is realized at its equator, where the surface density of the charge reaches the maximum value, and for the elongated droplet at its vertices.

Texto integral

Acesso é fechado

Sobre autores

A. Grigoriev

Ishlinsky Institute for Problems in Mechanics of the RAS

Autor responsável pela correspondência
Email: grigorai@mail.ru
Rússia, Moscow

S. Shiryaeva

Yaroslavl State University named after P.G. Demidov

Email: shir@uniyar.ac.ru
Rússia, Yaroslavl

Bibliografia

  1. Rayleigh (Strutt J.W.) On the equilibrium of liquid conducting masses charged with electricity // Phil. Mag., 1882, vol. 14, pp. 184–186.
  2. Hendrics C.D., Schneider J.M. Stability of conducting droplet under the influence of surface tension and electrostatic forces // J. Amer. Phys., 1963, vol. 1, no. 6, pp. 450–453.
  3. Grigoriev A.I. On the mechanism of instability of a charged conductive drop // J. of Tech. Phys., 1986, vol. 56, no. 7, pp. 1272–1278.
  4. Danilov S.D., Mironov M.A. Flattening and crushing of the drop in the sound field // Acoustic J., 1987, vol. 33, no. 2, pp. 233–239.
  5. Sterlyadkin V.V. Light scattering by raindrops // Optics of the Atmos.&Ocean, 2000, vol. 13, no. 5, pp. 534–537.
  6. Kistovich A.V., Chashechkin Yu.D. Surface fluctuations of the free-falling drop of the ideal liquid // Izv. RAS. FAO, 2018, vol. 54, no. 2, ss. 1–7.
  7. Sergeev M.N. To the theory of crushing a charged drop in a stream // Engng. J.: Sci.&Innov., 2018, no. 4, ss. 1–11.
  8. Ilyushin Ya.A., Kutuza B.G. Multispectral polarization characteristics of outgoing microwave radiation of rainfall//Physical Foundations of Instrumentation, 2018, Т. 7, no. 1(27), pp. 37–48.
  9. Samukhina Yu.V., Matyushin D.D., Polyakov P.A., Buryak A.K. On charge instability and metastable equilibrium state of a charged conductive drop during liquid electrospray // Colloid J., 2021, vol. 83, no. 4, pp. 449–455.
  10. Fedyaeva O.A., Poshelyuzhnaya E.G. Dimensions and orientation of triton micelles x-10 in aqueous solutions according to turbidimetry data // J. of Phys. Chem., 2019, vol. 93, no. 12, pp. 1910–1912.
  11. Grigoriev A.I., Kolbneva N.Yu., Shiryaeva S.O. On acoustic and electromagnetic radiation oscillating in the material medium of a charged drop // Izv. RAS. FAO, 2023, vol. 59, no. 3, ss. 352–372. https://doi.org/10.31857/S0002351523030045
  12. Grigor’ev A.I., Kolbneva N.Yu., Shiryaeva S.O. Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field // Fluid Dyn., 2022, vol. 57, no. 8, pp. 982–997. https://doi.org/10.1134/S0015462822080031
  13. Zubarev N.M. Self-similar solutions for conic cusps formation at the surface of dielectric liquids in electric field // Phys. Rev. E, 2002, vol. 65, no. 055301, pp. 1–4. https://doi.org/10.1103/PhysRevE.65.055301
  14. de la Mora J.F. The fluid dynamics of Taylor cones // Ann. Rev. of Fluid Mech., 2007, vol. 39, pp. 217–243, https://doi.org/10.1146/annurev.fluid.39.050905.110159
  15. Taflin D.C., Ward Т.L., Davis E.J. Electrified droplet fission and the Rayleigh limit // Langmuir, 1989, vol. 9, no. 2, pp. 376–384. https://doi.org/10.1021/la00086a016
  16. Duft D., Achtzehn T., Muller R. et al. Rayleigh jets from levitated microdroplets // Nature, 2003, vol. 421, pp. 128.
  17. Kuo-Yen Li, Haohua Tu, Ray A.K. Charge limits on droplets during evaporation // Langmuir, 2005, vol. 21, no. 9, pp. 3786–3794. https://doi.org/10.1021/la047973n
  18. Fong Chee Sheng, Black N.D., Kiefer P.A., Shaw R.A. An experiment on the Rayleigh instability of charged liquid drops // Am.J. Phys., 2007, vol. 75, no. 6, pp. 499–503. https://doi.org/10.1119/1.2717221
  19. Hunter H.C., Ray Asit K. On progeny droplets emitted during Coulombic fission of charged microdrops // Phys. Chem.&Chem. Phys., 2009, vol. 11, no. 29, pp. 6156–6165. https://doi.org/10.1039/b820457h
  20. Grigoriev A.I., Shiryaeva S.O. Critical conditions of instability of flattened spheroidal highly charged drop // EOM, 1992, no. 6, pp. 20–23.
  21. Frenkel J.I. To the Tonks theory of liquid surface rupture by a constant electric field in vacuum // PETF, 1936, vol. 6, no. 4, pp. 348–350.
  22. Landau L.D., Lifshits E.M. Hydrodynamics. Moscow: Nauka, 1982. 620 p.
  23. Landau L.D., Lifschitz E.M. Theoretical Physics. Vol. 8. Electrodynamics of Continuous Media. Moscow: Nauka, 1992. 662 p.
  24. Bezrukov V.I. Scientific and Technical Foundations and Hardware of Automated Electrocaplestjet Marking of Products / Diss. for the degree of Doctor of Tech. Sci. St. Petersburg State Polytechnic Univ., St. Petersburg: 2003. 505 p.
  25. Filchakov L.F. Handbook of Higher Mathematics. Kiev: Naukova Dumka, 1973. 744 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Graph of the dependence of the dimensionless surface density of the proper electric charge on a spheroidal drop of an incompressible conductive liquid on the value of its eccentricity e and its polar angle: a flattened drop; b elongated drop.

Baixar (475KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024