Strengthening of hollow spheres using combined method of hydraulic and thermal autofrettage

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The distributions of residual and working stresses in hollow spheres pre-strengthened using a combination of hydraulic and thermal autofrettage are investigated. The analysis is based on the theory of infinitesimal elastoplastic strains, the Tresca or von Mises yield condition, the associated flow rule and the linear isotropic hardening law. During unloading, the sphere material may exhibit the Bauschinger effect. All mechanical and thermophysical parameters are assumed to be independent of temperature. Exact analytical solutions are found for both loading and unloading stages including secondary plastic flow. The values of technological parameters are established at which the strengthening effect is achieved near the inner surface of the sphere. Analysis of the results shows that the use of a positive temperature gradient makes it possible to increase the absolute value of residual stresses on the inner surface of the sphere. On the other hand, with the help of a negative gradient it is possible to reduce working stresses in the sphere.

Texto integral

Acesso é fechado

Sobre autores

A. Prokudin

Institute of Machinery and Metallurgy, Khabarovsk FRC, FEB RAS

Autor responsável pela correspondência
Email: sunbeam_85@mail.ru
Rússia, Komsomolsk-on-Amur

Bibliografia

  1. Dixit U.S., Kamal S.M., Shufen R. Autofrettage Processes: Technology and Modelling. Boca Raton: CRC Press, 2019. 276 p.
  2. Shufen R., Dixit U.S. A review of theoretical and experimental research on various autofrettage processes // J. Pressure Vessel Technol., 2018, vol. 140, no. 5, pp. 050802.
  3. Jacob L. La Résistance et L’équilibre Élastique des Tubes Frettés // Memorial de L’artillerie Navale, 1907, vol. 1, pp. 43–155.
  4. Zhan R., Tao C., Han L., Huang Y., Han D. The residual stress and its influence on the fatigue strength induced by explosive autofrettage // Explos. Shock Waves, 2005, vol. 25, no. 3, pp. 239–243.
  5. Kamal S.M., Dixit U.S. Feasibility study of thermal autofrettage of thick-walled cylinders // J. Pressure Vessel Technol., 2015, vol. 137, no. 6, pp. 061207.
  6. Zare H.R., Darijani H. A novel autofrettage method for strengthening and design of thick-walled cylinders // Mater. Des., 2016, vol. 105, pp. 366–374.
  7. Davidson T.E., Barton C.S., Reiner A.N., Kendall D.P. New approach to the autofrettage of high-strength cylinders // Exp. Mech., 1962, vol. 2, no. 2, pp. 33–40.
  8. Shufen R., Dixit U.S. A finite element method study of combined hydraulic and thermal autofrettage process // J. Pressure Vessel Technol., 2017, vol. 139, no. 4, pp. 041204.
  9. Shufen R., Singh N.P., Dixit U.S. Thermally assisted rotational autofrettage of long cylinders with free ends // J. Pressure Vessel Technol., 2023, vol. 145, no. 5, pp. 051303.
  10. Shufen R., Dixit U.S. Effect of length in rotational autofrettage of long cylinders with free ends // Proc. Inst. Mech. Eng., Pt. C, 2022, vol. 236, no. 6, pp. 2981–2994.
  11. Adibi-Asl R., Livieri P. 2007. Analytical approach in autofrettaged spherical pressure vessels considering the Bauschinger effect // J. Pressure Vessel Technol., 2007, vol. 129, no. 3, pp. 411–419.
  12. Kargarnovin M.H., Darijani H., Naghdabadi R. Evaluation of the optimum pre-stressing pressure and wall thickness determination of thick-walled spherical vessels under internal pressure // J. Frankl. Inst., 2007, vol. 344, no. 5, pp. 439–451.
  13. Parker A.P., Huang X. Autofrettage and reautofrettage of a spherical pressure vessel // J. Pressure Vessel Technol., 2007, vol. 129, no. 1, pp. 83–88.
  14. Perl M., Perry J. The beneficial contribution of realistic autofrettage to the load-carrying capacity of thick-walled spherical pressure vessels // J. Pressure Vessel Technol., 2010, vol. 132, no. 1, pp. 011204.
  15. Maleki M., Farrahi G.H., Haghpanah Jahromi B., Hosseinian E. Residual stress analysis of autofrettaged thick-walled spherical pressure vessel // Int. J. Press. Vessels Pip., 2010, vol. 87, no. 7, pp. 396–401.
  16. Alexandrov S., Pirumov A., Jeng Y.-R. Expansion/contraction of a spherical elastic/plastic shell revisited // Contin. Mech. Thermodyn., 2015, vol. 27, no. 3, pp. 483–494.
  17. Altenbach H., Lvov G., Naumenko K., Okorokov V. Consideration of damage in the analysis of autofrettage of thick-walled pressure vessels // Proc. Inst. Mech. Eng., Pt. C, 2016, vol. 230, no. 20, pp. 3585–3593.
  18. Ali Faghidian S. Analytical approach for inverse reconstruction of eigenstrains and residual stresses in autofrettaged spherical pressure vessels // J. Pressure Vessel Technol., 2017, vol. 139, no. 4, pp. 041202.
  19. Wen J.-F., Gao X.-L., Xuan F.-Z., Tu S.-T. Autofrettage and shakedown analyses of an internally pressurized thick-walled spherical shell based on two strain gradient plasticity solutions // Acta Mech., 2017, vol. 228, no. 1, pp. 89–105.
  20. Johnson W., Mellor P.B. Elastic-plastic behaviour of thick-walled spheres of non-work-hardening material subject to a steady-state radial temperature gradient // Int. J. Mech. Sci., 1962, vol. 4, no. 2, pp. 147–158.
  21. Śloderbach Z., Pajak J. Analysis of thick-walled elastic-plastic sphere subjected to temperature gradient // J. Therm. Stress., 2013, vol. 36, no. 10, pp. 1077–1095.
  22. Orçan Y., Gamer U. The elastic-plastic spherical shell with nonlinear hardening subject to a radial temperature gradient // Acta Mech., 1994, vol. 102, no. 1, pp. 183–198.
  23. Kargarnovin M.H., Rezai Zarei A., Darijani H. Wall thickness optimization of thick-walled spherical vessel using thermo-elasto-plastic concept // Int. J. Press. Vessels Pip., 2005, vol. 82, no. 5, pp. 379–385.
  24. Darijani H., Kargarnovin M. H., Naghdabadi R. Design of spherical vessels under steady-state thermal loading using thermo-elasto–plastic concept // Int. J. Press. Vessels Pip., 2009, vol. 86, no. 2, pp. 143–152.
  25. Murashkin E.V., Dats E.P. Thermoelastoplastic deformation of a multilayer ball // Mech. Solids, 2017, vol. 52, no. 5, pp. 495–500.
  26. Kovtanyuk L.V. Irreversible deformation and subsequent unloading of a spherical elastoviscoplastic layer // J. Appl. Mech. Tech. Phys., 2013, vol. 54, no. 1, pp. 148-155.
  27. Burenin A.A., Kovtanyuk L.V., Terletskii I.A. Irreversible deformation with subsequent unloading of a spherical viscoelastoplastic layer // Mech. Solids, 2014, vol. 49, no. 3, pp. 270–279.
  28. Bazhin A.A., Burenin A.A., Murashkin E.V. Simulation of the process of the accumulation of large irreversible deformations under plastic flow and creep conditions // JAMM, 2016, vol. 80, no. 2, pp. 182–189.
  29. Burenin A.A., Galimzyanova K.N., Kovtanyuk L.V., Panchenko G.L. Matching growth mechanisms of irreversible deformation of a hollow sphere under uniform compression // Dokl. Phys., 2018, vol. 63, no. 10, pp. 407–410.
  30. Kholdi M., Rahimi G., Loghman A., Ashrafi H., Arefi M. Analysis of thick-walled spherical shells subjected to various temperature gradients: thermo-elasto-plastic and residual stress studies // Int. J. Appl. Mech., 2021, vol. 13, no. 09, pp. 2150105.
  31. Ivlev D.D., Bykovcev G.I. Theory of Hardening Plastic Solid. Moscow: Nauka, 1971. 232 p. (in Russian)
  32. Alexandrov S., Jeng Y.-R. An elastic/plastic solution for a hollow sphere subject to thermo-mechanical loading considering temperature dependent material properties // Int. J. Solids Struct., 2020, vol. 200–201, pp. 23–33.
  33. Perry J., Perl M., Shneck R., Haroush S. The influence of the Bauschinger effect on the yield stress, Young’s modulus, and Poisson’s ratio of a gun barrel steel // J. Pressure Vessel Technol., 2005, vol. 128, no. 2, pp. 179–184.
  34. Shim W.S., Kim J.H., Lee Y.S., Cha K.U., Hong S.K. A study on hydraulic autofrettage of thick-walled cylinders incorporating Bauschinger effect // Exp. Mech., 2010, vol. 50, no. 5, pp. 621–626.
  35. Weiss M., Kupke A., Manach P.Y., Galdos L., Hodgson P.D. On the Bauschinger effect in dual phase steel at high levels of strain // Mater. Sci. Eng. A, 2015, vol. 643, pp. 127–136.
  36. Meng Q., Zhao J., Mu Z., Zhai R., Yu G. Springback prediction of multiple reciprocating bending based on different hardening models // J. Manuf. Process., 2022, vol. 76, pp. 251–263.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependences of pressure P0 and P1 on temperature gradient △.

Baixar (88KB)
3. Fig. 2. Distribution of equivalent plastic deformations in a sphere for Pa=0.75,1.0,…,1.75 at △=0.

Baixar (86KB)
4. Fig. 3. Residual radial (a) and tangential (b) stress in a sphere for at and .

Baixar (199KB)
5. Fig. 4. Operational tangential — a and equivalent — b stress in a sphere for at , , .

Baixar (133KB)
6. Fig. 5. Maximum tangential — a and equivalent — b stress in a sphere depending on the process pressure Pa and temperature gradient for and

Baixar (219KB)
7. Fig. 6. Maximum tangential (a) and equivalent (b) stress in a sphere depending on the process pressure Pa and temperature gradient for and .

Baixar (145KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024