Метод построения моделей для оценки показателей качества продуктов колонны фракционирования в условиях малого объема данных аналитического контроля

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Рассматривается задача повышения точности моделей для оценки показателей низкотемпературных свойств, показателей воспламеняемости и противоизносных свойств целевых продуктов колонны фракционирования в условиях малого объема данных аналитического контроля. Для решения рассматриваемой задачи предложен метод построения моделей, в составе которого используется алгоритм расширения малой обучающей выборки по данным фракционного состава, отличающийся способом отбора дополнительных данных, учитывающим показатель разреженности, что позволило включить в обучающую выборку недостающее количество данных, и в итоге обеспечить повышение качества модели. Использование предложенного метода позволило повысить точность моделей в среднем на 18% в сравнении с известными методами и в среднем на 6% в сравнении с методом на основе расширения обучающей выборки без учета показателя разреженности. Результаты представлены на примерах построения моделей показателей качества предельной температуры фильтруемости, температуры вспышки, кинематической вязкости при 40ºC и цетанового числа среднего дистиллята (фракции дизельного топлива) и температуры вспышки керосиновой фракции промышленной колонны фракционирования технологической установки гидрокрекинга.

Полный текст

Доступ закрыт

Об авторах

А. А. Плотников

Институт автоматики и процессов управления ДВО РАН

Email: torgashov@iacp.dvo.ru
Россия, Владивосток

Д. В. Штакин

Институт автоматики и процессов управления ДВО РАН

Email: torgashov@iacp.dvo.ru
Россия, Владивосток

О. Ю. Снегирев

Институт автоматики и процессов управления ДВО РАН

Email: torgashov@iacp.dvo.ru
Россия, Владивосток

А. Ю. Торгашов

Институт автоматики и процессов управления ДВО РАН

Автор, ответственный за переписку.
Email: torgashov@iacp.dvo.ru
Россия, Владивосток

Список литературы

  1. Logunov P.L., Shamanin M.V., Kneller D.V., Setin S.P., Shunderyuk M.M. Advanced process control: from a PID loop up to refinery-wide optimization // Autom. & Remote Control. 2020. V. 80. № 10. P. 1929.
  2. Iplik E., Aslanidou I., Kyprianidis L. Hydrocracking: a perspective towards digitalization // Sustainability. 2020. V. 12. № 17. P. 1.
  3. Fortuna L., Graziani S., Sicilia M.G. Comparison of soft-sensor design methods for industrial plants using small data sets // IEEE Transactions on Instr. And Meas. 2009. V. 58. № 8. P. 2444.
  4. Shaikhina T., Khovanova N.A. Handling limited datasets with neural networks in medical applications: a small-data approach // Artificial Intel. In Med. 2016. V. 75. № 1. P. 1.
  5. Napoli G., Xibilia M.G. Soft Sensor design for a Topping process in the case of small datasets // Comput. & Chem. Eng. 2010. V. 35. № 11. P. 2447.
  6. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. М.: Финансы и статистика, 1986. С. 73.
  7. Гаскаров Д.В., Шаповалов В.И. Малая выборка. М.: Статистика, 1978. С. 19.
  8. Zhu Q.X., Hou K.R., Chen Z.S., Gao Z.S., Xu Y., He Y.L. Novel virtual sample generation using conditional GAN for developing soft sensor with small data // Eng. Appl. Artif. Intell. 2021. V. 106. № 2.
  9. Zhang X.H., Xu Y., He Y.L., Zhu Q.X. Novel manifold learning based virtual sample generation for optimizing soft sensor with small data // ISA Transactions. 2021. V. 109. № 1. P. 229.
  10. Li D.C., Lin L.S., Peng L.J. Improving learning accuracy by using synthetic samples for small datasets with non-linear attribute dependency // Decision Support Syst. 2014. V. 59. № 1. P. 286.
  11. Samotylova S.A., Torgashov A.Yu. Application of a first principles mathematical model of a mass-transfer technological process to improve the accuracy of the estimation of the end product quality // Theor. Found. Chem. Eng. 2022. V. 56. № 3. P. 371. [Самотылова С.А., Торгашов А.Ю. Применение физически обоснованной математической модели массообменного технологического процесса для повышения точности оценивания качества конечного продукта // Теорет. основы хим. технологии. 2022. Т. 56. № 3. С. 371.]
  12. Bai X., Li S. A virtual sample generation method based on manifold learning and a generative adversarial network for soft sensor models with limited data // J. of the Taiwan Inst. of Chem. Eng. 2023. V. 151. № 3.
  13. Liu Y., Xie M. Rebooting data-driven soft-sensors in process industries: a review of kernel methods // J. of Proc. Control. 2020. V. 89. № 4. P. 58.
  14. He Y.L., Hua Q., Zhu Q.H., Lu S. Enhanced virtual sample generation based on manifold features: applications to developing soft sensor using small data // ISA Transactions. 2021. V. 126. № 4. P. 1.
  15. Zhu Q.X., Chen Z.S., Zhang X.H., Rajabifard A., Xu Y., Chen Y.Q. Dealing with small sample size problems in process industry using virtual sample generation: a kriging-based approach // Soft Computing. 2020. V. 24. № 1. P. 6889.
  16. Dinkov R., Stratiev D. Investigation on diesel cold flow properties // Proc. 45th International Petroleum Conf. Bratislava, 2011. P. 1.
  17. Vrablik A., Velvarska R., Stepanek K., Psenicka M., Hidalgo J.M., Cerny R. Rapid models for predicting the low-temperature behavior of diesel // Chem. Eng. Technology. 2019. V. 42. № 7. P. 735.
  18. Aleme H.G., Barbeira P.J.S. Determination of flash point and cetane index in diesel using distillation curves and multivariate calibration // Fuel. 2019. V. 102. № 1. P. 129.
  19. Gorenkov A.F., Lifanova T.A., Klyuchko I.G. Influence of jet fuel distillation range on quality indexes // Chem. & Technology of Fuels & Oils. 1985. V. 21. № 8. P. 37. [Горенков А.Ф., Лифанова Т.А., Кличко И.Г. Влияние диапазона перегонки реактивного топлива на показатели качества // Химия и Техн. Топлив и Масел. 1985. Т. 21. № 8. С. 37.]
  20. Aleme H.G., Assuncao R.A., Carvalho M.M.O., Barbeira P.J.S. Determination of specific gravity and kinematic viscosity of diesel using distillation curves and multivariate calibration // Fuel Processing Techn. 2012. V. 102. № 1. P. 90.
  21. Shepherd J.E., Nyut C.D., Lee J.J. Flash point and chemical composition of aviation kerosene (Jet A) // Explosion Dynamics Laboratory Report FM99-4. 1999. P. 1.
  22. Штакин Д.В., Снегирев О.Ю., Торгашов А.Ю. Метод построения виртуальных анализаторов в условиях малой обучающей выборки для управления качеством целевых продуктов фракционатора установки гидрокрекинга // Автоматизация в пром. 2024. Т. 22. № 6. С. 7.
  23. Dumuochel W., O’Brien F. Integrating a robust option into a multiple regression computing environment // Comp. and graphics in statistics. 1992. P. 41.
  24. Cybenko G. Approximation by superpositions of a sigmoidal function // Math. of Control, Signals & Systems. 1989. V. 2. № 1. P. 303.
  25. Bylesjo M., Rantalainen M., Nicholson J.K., Holmes E., Trygg J. K-OPLS package: Kernel-based orthogonal projections to latent structures for prediction and interpretation in feature space // BioMed Central. 2008. V. 9. № 1. P. 1.
  26. Holland P.W., Welsch R.E. Robust regression using iteratively reweighted least-squares // Communic. in Statistics – Theory & Methods. 1977. V. 6. № 9. P. 813.
  27. Rantalainen M., Bylesjo M., Cloarec O., Nicholson J.K., Holmes E., Trygg J. Kernel-based orthogonal projections to latent structures (K-OPLS) // J. of Chemometrics. 2007. V. 21. № 7–9. P. 376.
  28. Hayrettin O. Bayesian regularized neural networks for small n big p data // Artif. Neural Net. – Models & Appl. 2016. P. 27.
  29. Prak D.L., Cooke J., Dickerson T., McDaniel A., Cowart J. Cetane number, derived cetane number, and cetane index: when correlations fail to predict combustibility // Fuel. 2021. V. 289. № 12. P. 1.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема ТП фракционирования. К-1 – колонна фракционирования, К-2 – колонна отпаривания КФ, К-3 – колонна отпаривания среднего дистиллята, К-4 – колонна отпаривания тяжелого дизельного топлива, КФ – керосиновая фракция, СД – средний дистиллят, ДФ – дизельная фракция, ТДФ – тяжелая дизельная фракция, ВЦО – верхнее циркуляционное орошение, НЦО – нижнее циркуляционное орошение.

Скачать (415KB)
3. Рис. 2. Гистограммы распределения данных в ОВ: (а) ПТФ среднего дистиллята; (б) Твсп среднего дистиллята; (в) вязкость при 40ºC среднего дистиллята; (г) ЦЧ среднего дистиллята; (д) Твсп керосиновой фракции.

Скачать (591KB)
4. Рис. 3. Структура предлагаемого метода построения модели для оценки ПК в условиях малой выборки.

Скачать (334KB)
5. Рис. 4. Графики зависимостей САО при тестировании на ОВИСД от значения показателя разреженности обучающей выборки S: (а) ПТФ среднего дистиллята; (б) Твсп среднего дистиллята; (в) вязкость при 40ºC среднего дистиллята; (г) ЦЧ среднего дистиллята; (д) Твсп керосиновой фракции.

Скачать (487KB)

© Российская академия наук, 2025