Benchmark Experiments Using Neutrons Produced by 21.5 MeV Proton Irradiation of a “Thick” Beryllium Target

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

A total of 77 experimental values of reaction rates for the (n, 2n), (n, p), (n, pn), (n, α), (n, γ), and (n, f) channels were obtained in the neutron spectrum generated by 21.5 MeV protons irradiating a beryllium target. The measurements were carried out using both natural and highly enriched samples of the following elements: natNi, natZr, natNb, natCd, natTi, natCo, 63,65,natCu, 64Zn, natIn, natAl, natMg, natFe, natAu and natTh. The experiments were performed using the activation technique without destructive analysis of the irradiated samples. Reaction products were measured via γ-ray spectrometry employing two coaxial high-purity germanium (HP Ge) detectors and one planar detector. The acquired γ-spectra were processed using the GENIE2000 software suite. Independent and/or cumulative reaction rates were calculated using the SIGMA code. In total, 77 reaction products were identified, with half-lives ranging from 9.458 minutes (27Mg) to 5.27 years (60Co). The resulting dataset was utilized to assess the predictive capabilities of the PHITS-3.31 code coupled with the JENDL-5 nuclear data library, as applied to the modeling of blanket systems in hybrid reactor facilities.

About the authors

Yu. E. Titarenko

NRC “Kurchatov Institute”, Moscow, Russia

Email: yury.titarenko@itep.ru

A. A. Arkhipov

NRC “Kurchatov Institute”, Moscow, Russia

S. A. Balyuk

NRC “Kurchatov Institute”, Moscow, Russia

V. F. Batyaev

NRC “Kurchatov Institute”, Moscow, Russia

M. V. Batyaeva

NRC “Kurchatov Institute”, Moscow, Russia

V. D. Davidenko

NRC “Kurchatov Institute”, Moscow, Russia

V. M. Zhivun

NRC “Kurchatov Institute”, Moscow, Russia

Ya. O. Zaritskiy

NRC “Kurchatov Institute”, Moscow, Russia

A. A. Kovalishin

NRC “Kurchatov Institute”, Moscow, Russia

M. V. Kotelniy

NRC “Kurchatov Institute”, Moscow, Russia

A. S. Kirsanov

NRC “Kurchatov Institute”, Moscow, Russia

T. V. Kulevoy

NRC “Kurchatov Institute”, Moscow, Russia

I. V. Mednikov

NRC “Kurchatov Institute”, Moscow, Russia

B. A. Novikov

NRC “Kurchatov Institute”, Moscow, Russia

A. V. Orlov

NRC “Kurchatov Institute”, Moscow, Russia

K. V. Pavlov

NRC “Kurchatov Institute”, Moscow, Russia

V. S. Stolbunov

NRC “Kurchatov Institute”, Moscow, Russia

A. Yu. Titarenko

NRC “Kurchatov Institute”, Moscow, Russia

R. S. Tikhonov

NRC “Kurchatov Institute”, Moscow, Russia

M. N. Shlenskii

NRC “Kurchatov Institute”, Moscow, Russia

N. A. Kovalenko

NRC “Kurchatov Institute”, Moscow, Russia

References

  1. S. A. Balyuk, V. F. Batyaev, K. G. Chernov, V. M. Chernov, V. D. Davidenko, D. N. Demidov, A. V. Golubeva, A. N. Kirsanov, A. A. Kovalishin, B. V. Kuteev, I. V. Mednikov, A. M. Ovcharenko, K. V. Pavlov, A. P. Persianova, T. A. Shishkova, M. N. Shlenskii, et al., in Proceedings of the 30th IAEA Fusion Energy Conference (IAEA FEC2025), Chengdu, 13–18 Oct, 2025; https://conferences.iaea.org/event/392/contributions/ 36188/
  2. Ю. Е. Титаренко, А. А. Архипов, С. А. Балюк, В. Ф. Батяев, М. В. Батяева, В. Д. Давиденко, В. М. Живун, Я. О. Зарицкий, А. А. Ковалишин, М. В. Котельный, А. С. Кирсанов, Т. В. Кулевой, И. В. Медников, Б. А. Новиков, А. В. Орлов, К. В. Павлов, В. С. Столбунов, А. Ю. Титаренко, Р. С. Тихонов, М. Н. Шленский, Н. А. Коваленко, ЯФ 88, 286 (2025) [Phys. At. Nucl. 88, № 3 (2025)].
  3. T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S. Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, H. Shigyo, L. Sihver, K. Niita, J. Nucl. Sci. Technol. 55, 684 (2018).
  4. O. Iwamoto, N. Iwamoto, S. Kunieda, F. Minato, S. Nakayama, Y. Abe, K. Tsubakihara, S. Okumura, C. Ishizuka, T.Yoshida, S. Chiba, N. Otuka, J.-C. Sublet, H. Iwamoto, K.Yamamoto,Y. Nagaya, K. Tada, C. Konno, N. Matsuda, K. Yokoyama, H. Taninaka, A. Oizumi, M. Fukushima, S. Okita, G. Chiba, S. Sato, M. Ohta, S. Kwon, J. Nucl. Sci. Technol. 60, 1 (2023).
  5. Yu. E. Titarenko, V. F. Batyaev, E. I. Karpikhin, R. D. Mulambetov, A. B. Koldobsky, V. M. Zhivun, S. V. Mulambetova, K. A. Lipatov, Yu. A. Nekrasov, A. V. Belkin, N. N. Alexeev, V. A. Schegolev, Yu. M. Goryachev, V. E. Luk’yashin, E. N. Firsov, INDC(CCP)-434 (Vienna, 2002); http://www-nds.iaea.org/publications/indc/indc-ccp-0434.pdf
  6. Yu. E. Titarenko, V. F. Batyaev, E. I. Karpikhin, V. M. Zhivun, A. V. Ignatyuk, V. P. Lunev, N. N. Titarenko, Yu. N. Shubin, V. S. Barashenkov, INDC(CCP)-0447 (Vienna, 2009); http://www-nds.iaea.org/publications/indc/indc-ccp-0447.pdf
  7. Yu. E. Titarenko, V. F. Batyaev, A. A. Belonozhenko, S. P. Borovlev, M. A. Butko, S. N. Florya, R. V. Pavlov, V. I. Rogov, R. S. Tikhonov, A. Yu. Titarenko, V. M. Zhivun, INDC(CCP)-0453 (Vienna, 2009); http://www-nds.iaea.org/publications/indc/indc-ccp-0453.pdf
  8. www.sigmaaldrich.com, CAS Numbers: 7440-02-2, 7429-90-5, 7440-48-4, 7440-32-6, 7439-89-6, 7440-74-6.
  9. www.goodfellow.com, Artikel-Nrs: ZR000300/4, CD000240/4, MG000300/23; https://www.acros.com/, CAS Number: 7440-30-4.
  10. Стабильные изотопы, Cu; http://www.isotop.ru/production/stable-isotopes/element-cu
  11. Цинк-64; http://www.isotop.ru/view/1856/
  12. Ю. Е. Титаренко, И. В. Медников, В. Ф. Батяев, К. В. Павлов, А. Ю. Титаренко, В. О. Легостаев, В. М. Живун, Я. О. Зарицкий, А. А. Ковалишин, В. Д. Давиденко, Б. В. Кутеев, Ю. А. Кащук, С. А. Мещанинов, С. Ю. Обудовский, ВАНТ. Сер. Ядерно-реакторные константы, вып. 2, 60 (2023).
  13. Genie™ 2000 Gamma Analysis Software. Mirion Technologies (Canberra), Inc.
  14. Nudat 2 — National Nuclear Data Center (NNDC); https://www.nndc.bnl.gov
  15. V. M. Zhivun and Y. E. Titarenko, “Certificate of State Registration of the Program for PC,” № 2015617025, Rospatent Federal Service for Intellectual Property (2015).
  16. Ю. Е. Титаренко, С. П. Боровлев, М. А. Бутко, В. М. Живун, К. В. Павлов, В. И. Рогов, А. Ю. Титаренко, Р. С. Тихонов, С. Н. Флоря, А. Б. Колдобский, ЯФ 74, 531 (2011) [Phys. At. Nucl. 74, 507 (2011)].
  17. G. R. Lynch and O. I. Dahl, Nucl. Instrum. Methods Phys. Res. B 58, 6 (1991); https://doi.org/10.1016/0168-583X(91)95671-Y
  18. Experimental Nuclear Reaction Data (EXFOR) Website, International Atomic Energy Agency, Nuclear Data Services; https://www-nds.iaea.org/exfor/ (DatabaseVersion of 2025-05-09).
  19. M. A. Lone, C. B. Bigham, J. S. Fraser, H. R. Schneider, T. K. Alexander, A. J. Ferguson, and A. B. McDonald, Nucl. Instrum. Methods 143, 331 (1977).
  20. JENDL-4.0; https://wwwndc.jaea.go.jp/jendl/j40/j40.html
  21. Yu. E. Titarenko, V. F. Batyaev, M. A. Butko, D. V. Dikarev, S. N. Florya, K. V. Pavlov, A. Yu. Titarenko, R. S. Tikhonov, V. M. Zhivun, A. V. Ignatyuk, S. G. Mashnik, A. Boudard, S. Leray, J.-C. David, J. Cugnon, D. Mancusi, et al., Phys. Rev. C 84, 064612 (2011); https://doi.org/10.1103/PhysRevC.84.064612
  22. Yu. E. Titarenko, K. V. Pavlov, A. Yu. Titarenko, V. O. Legostaev, M. A. Zhigulina, R. S. Khalikov, V. M. Zhivun, T. V. Kulevoy, A. A. Kovalishin, A. A. Dudnikov, V. Yu. Blandinskiy, V. D. Davidenko, M. V. Ioannisian, V. I. Belousov, I. I. Dyachkov, K. G. Chernov, et al., Fusion Sci. Techn. 78, 549 (2022); https://doi.org/10.1080/15361055.2022.2076999

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences