Теоретическое исследование адсорбции некоторых азолов на поверхности графена

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Изучена адсорбция 1Н-пиразола, 1Н-имидазола и 1Н-1,2,4-триазола на поверхности однородного графена с помощью теории функционала плотности. Рассчитаны атомные заряды по методу Малликена для индивидуальных азолов, согласно которым электронная структура 1Н-имидазола с выраженным диполем является наиболее благоприятной для адсорбции на поляризуемом графене. Построены кривые потенциалов Леннард-Джонса, из которых найдены значения энтальпий адсорбции азолов. Оценены электронные возмущения, возникающие как изменения электронной плотности в ходе связывания с графеном. Проведено сравнение полученных результатов с литературными данными о характере адсорбции азолов на неполярных сорбентах. Отмечена необходимость учета распределения электронной плотности при объяснении механизма адсорбции на поверхности графена.

Об авторах

О. И. Гриневич

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Автор, ответственный за переписку.
Email: oksigrinevich@gmail.com
Россия, Москва

А. К. Буряк

Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Email: oksigrinevich@gmail.com
Россия, Москва

Список литературы

  1. Arora P., Arora V., Lamba H.S. et al. // IJPSR. 2012. V. 3. No 9. P. 2947.
  2. Östman C.E., Colmsjö A.L. // Fuel. 1988. V. 67. March. P. 396.
  3. Kurbatova S.V., Kharitonova O.V., Finkel’shtein E.E. // Rus. J. of Phys. Chem. A. 2008. V. 82. No 11. P. 1932–1937. https://doi.org/10.1134/S003602440811023X.
  4. Попов М.С., Ульяновский Н.В. // Масс-спектрометрия. 2019. Т. 16. № 3. С. 205. https://doi.org/10.25703/MS.2019.16.36.
  5. Киселев А.В., Полотнюк Е.Б., Щербакова К.Д. // Докл. АН СССР. 1982. Т. 266. С. 892.
  6. Киселев А.В., Пошкус Д.П., Щербакова К.Д. // Журн. физ. химии. 1986. Т. 60. № 6. С. 1329–1343.
  7. Bobyleva M.S., Kiselev A.V., Kulikov N.S. et al. // Adsorption Science & Technology. 1985. V. 2. No 3. P. 165. https://doi.org/10.1177/026361748500200303.
  8. Zhuravleva I.L., Krikunova N.I., Golovnya R.V. // Rus. Chem. Bulletin. 1995. V. 44. No 2. P. 300.
  9. Golovnya R.V., Kuz’menko T.E., Zhuravleva I.L. // Ibid. 1999. V. 48. No 4. P. 726.
  10. Zhuravleva I.L., Kuz’menko T.E. // Ibid. 1999. V. 48. No 10. P. 1931.
  11. Golubović J., Protić A., Zečević M. et al. // Talanta. 2012. V. 100. P. 329–337. https://doi.org/10.1016/j.talanta.2012.07.071.
  12. Motta M., Rice J.E. // Wiley Interdisciplinary Reviews: Computational Molecular Science. 2022. V. 12. No 3. https://doi.org/10.1002/wcms.1580.
  13. Tsuneda T. Density Functional Theory in Quantum Chemistry Density Functional Theory in Quantum Chemistry. 1st ed. Tokyo: Springer Tokyo, 2014. https://doi.org/10.1007/978-4-431-54825-6.
  14. Nakada K., Ishii A. // Solid State Communications. 2011. V. 151. No 1. P. 13. https://doi.org/10.1016/j.ssc.2010.10.036.
  15. Peng B., Chen L., Que C. et al. // Scientific Reports. 2016. V. 6. No 1. P. 31920. https://doi.org/10.1038/srep31920.
  16. Tavassoli Larijani H., Darvish Ganji M., Jahanshahi M. // RSC Advances. 2015. V. 5. No 113. P. 92843–92857. https://doi.org/10.1039/C5RA16683G.
  17. Li B., Ou P., Wei Y. et al. // Materials. 2018. V. 11. No 5. P. 726. https://doi.org/10.3390/ma11050726.
  18. Qin W., Li X., Bian W.-W. et al. // Biomaterials. 2010. V. 31. No 5. P. 1007–1016. https://doi.org/10.1016/j.biomaterials.2009.10.013.
  19. Wuest J.D., Rochefort A. // Chemical Communications. 2010. V. 46. No 17. P. 2923. https://doi.org/10.1039/b926286e.
  20. Voloshina E.N., Mollenhauer D., Chiappisi L. et al. // Chemical Physics Letters. 2011. V. 510. No 4–6. P. 220–223. https://doi.org/10.1016/j.cplett.2011.05.025.
  21. Grinevich O.I., Volkov V.V., Buryak A.K. // Physical Chemistry Chemical Physics. Royal Society of Chemistry. 2022. V. 24. No 48. P. 29712. https://doi.org/10.1039/d2cp05096j.
  22. Perdew J.P., Burke K., Ernzerhof M. // Physical Review Letters. 1996. V. 77. No 18. P. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865.
  23. Perdew J.P., Ruzsinszky A., Csonka G.I. et al. // Ibid.2008. V. 100. No 13. P. 136406. https://doi.org/10.1103/PhysRevLett.100.136406.
  24. Grimme S., Antony J., Ehrlich S. et al. // J. of Chemical Physics. 2010. V. 132. No 15. P. 154104. https://doi.org/10.1063/1.3382344.
  25. VandeVondele J., Hutter J. // Ibid.2007. V. 127. No 11. P. 114105. https://doi.org/10.1063/1.2770708.
  26. Goedecker S., Teter M. // Physical Review B — Condensed Matter and Materials Physics. 1996. V. 54. No 3. P. 1703–1710. https://doi.org/10.1103/PhysRevB.54.1703.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024