Casimir polarization of the electromagnetic field vacuum in the vicinity of particles as a determinant of their interactions: phenomenology
- Authors: Timashev S.F.1
-
Affiliations:
- National Research Nuclear University MEPhI
- Issue: Vol 99, No 8 (2025)
- Pages: 1125-1138
- Section: CHALLENGES, DEVELOPMENT TRENDS, AND CURRENT PROBLEMS OF PHYSICAL CHEMISTRY
- Submitted: 06.11.2025
- Published: 15.08.2025
- URL: https://journals.eco-vector.com/0044-4537/article/view/695883
- DOI: https://doi.org/10.7868/S3034553725080014
- ID: 695883
Cite item
Abstract
It is shown that the introduction of non-zero volume of particles, as well as the notion of kasimirov polarization of electromagnetic field vacuum – EM-vacuum in the vicinity of atoms, atomic nuclei and elementary particles with formation of corresponding EM-polarons, allows to understand the physical essence of quantum phenomena and processes determined by “overlapping” (interaction) of kasimirov polarization regions in the vicinity of particles. The physical essence of the effect of “entanglement” (“entanglement”) is discussed; the variety of processes of Bose-Einstein condensation of particles and formed condensates, the genesis of inertia forces arising in accordance with the 3rd law of Newton’s mechanics at all levels of spatial and temporal organization of the universe; the key role of virtual photons in all the above processes. It is shown that within the framework of the previously proposed model of the dynamics of the universe as an integral open system the connections establishing the nature of irreversibility of the dynamics of all processes, up to the processes of energy transmission to electron subsystems of atoms and nuclear matter of nuclei, which is necessary for stabilization of functional activity of these systems, can be revealed. In particular, within the framework of the presented understanding of the physical essence of the phenomena of superconductivity and superfluidity, one of the key epistemological problems is solved – understanding of the physical basis of the manifestations of “nondissipativity” of these phenomena.
About the authors
S. F. Timashev
National Research Nuclear University MEPhI
Email: serget@mail.ru
Moscow, Russia
References
- Кадомцев Б.Б. Динамика и информация. М.: Ред. УФН, 1997. 400 с.
- Watrous J. The Theory of Quantum Information. Cambridge University Press, 2018. 598 p.
- Einstein A., Podolsky B., Rosen N. // Phys. Rev. 1935. V. 47. Iss. 10. P. 777.
- Fry E.S., Thomson R.C. // Phys. Rev. Lett. 1976. V. 37. P. 465–468.
- Aspect A., Grangier P., Roger J. // Ibid. 1981. V. 47. P. 460.
- Aspect A., Grangier P., Roger G. // Ibid. 1982. V. 49. P. 91.
- Aspect A., Dalibard J., Roger G. // Ibid. 1982. V. 49. P. 1804.
- Kiess T.E., Shih Y.H., Sergienko A.V., Alley C.O. // Ibid.1993. V. 71. P. 3893.
- Тимашев С.Ф. // Журн. физ. химии. 2022. Т. 96. № 8. С. 1093. https://rdcu.be/cUWGM.
- Тимашев С.Ф. // Там же. 2022. Т. 96. № 12. С. 1695.
- Тимашев С.Ф. // Там же. 2024. Т. 98. № 4. С. 3. http://arxiv.org/abs/2404.08009v4.
- Timashev S.F. Physical Vacuum as a System Manifesting Itself on Various Scales – From Nuclear Physics to Cosmology. arXiv:1107.1799v8 [physics.gen-ph]
- Киттель Ч., Найт У., Рудерман М. Берклеевский курс физики. Т. 1. Механика. М.: Наука, Главная ред. физ.-мат. лит. 1975, 480 с.
- Weinberg C.S. // Rev. Mod. Phys. 1989. V. 61. P. 1.
- Somerville R.S., Davé R. Physical Models of Galaxy Formation in a Cosmological Framework. Ann. Rev. Astron. Astrophys, 2015. V. 53. Р. 51.
- Glazebrook K., Nanayakkara T., Corentin Schreiber C., et al. // Nature. 2024. V. 628. P. 277. arXiv:2308.05606v2 [astro-ph.GA] 14 Feb 2024.
- Haro A.P., Dickinson M., Finkelstein S.L., et al. // Ibid. 2023. V. 622. P. 707. arXiv:2303.15431 [astro-ph.GA].
- Sabti N., Muñoz J.B., Kamionkowski M. // Phys. Rev. Lett. 2024. V. 132. P. 061002.
- Maiolino, Jan Scholtz, J. Witstok et al. // Nature. 2024. V. 627. P. 59. 17 Jan 2024. arXiv:2305.12492.
- Carniani S., Hainline K., D’Eugenio F. et al. // Ibid. 2024. V. 633. P. 318. arXiv:2405.18485 [astro-ph.GA]
- Kozyrev N.A. Selected works. Leningrad: Publishing House of Leningrad University, 1991. 448 p.
- Davies P.C.W. Superforce: The Search for a Grand Unified Theory of Nature. New York: Simon and Schuster, 1984.
- Lessing А.М., Shara М.М., Hounsell R. // Astrophys. Journal. 2024. V. 973. № 2. P. 144. ArXiv:2309.16856v2 12 Apr. 2023
- Timashev S. // Intern. J.of Astrophysics and Space Science. 2015. V. 3. № 4. P. 60. http://www.sciencepublishinggroup.com/journal/paperinfo.aspx?journalid=302&doi=10.11648/j.ijass.20150304.12
- Stickler B.A., Hornberger K., Kim M.S. // Nat. Rev. Phys. 2021. V. 3. P. 589. arXiv:2102.00992v2 [quantum-ph].
- Zielińska J.A., van der Laan F., Norrman A. et al. // Phys. Rev. Lett. 2024. V. 132. P. 253601. arXiv:2310.03706v1 [physics.optics].
- Stephenson F.R., Morrison L.V., Hohenkerk C. // Proceedings of the Royal Society A. 2016. V. 472 (2196): 20160404
- Klaers J., Schmitt J., Vewinger F, Weitz M. // Nature. 2010. V. 468. P. 545. [Klaers J., Schmitt J., Vewinger F., Weitz M. Bose-Einstein condensation of paraxial light / ArXiv: 1109.4023 19 Sep 2011].
- Терлецкий Я.П. Статистическая физика. М.: Высш. Школа, 1994. 353 с.
- Бекман И.Н. Атомная и ядерная физика: радиоактивность и ионизирующие излучения. 2-е изд. М.: Юрайт, 494 с.
- Klapdor-Kleingrothaus H.V., Zuber K. Particle Astrophysics. CRC, Boca Raton. FL. 1997.
- Глазков В.Н. Электродинамика и сверхпроводимость. Основы микроскопии. Сверхпроводники II рода. M.: МФТИ, 2018. 40 с.
- London F.H. // Proc. Roy. Soc. (London). 1935. V. A149. P. 71.
- Matsushita T. Flux Pinning in Superconductors. Berlin, Heidelberg: Springer, 2014. 475 p.
- Nakamura S., Matsumoto H., Ogawa H. et al. // Phys. Rev. Lett. 2024.V. 133. P. 036004. arXiv:2401.07397 [cond-mat.supr-con].
- Kapitza P.L. // Nature. 1938. V. 141. № 3558. P. 74.
- Ohba T. // Scientific Reports. 2016. V. 6. P. 28992.
- Henshaw D.G., Woods A.D.B. // Physical Review. 1961. V. 121. P. 1266.
- Yarmchuk E.J., Gordon M.J.V., Packard R.E. // Phys. Rev. Lett. 1979. V. 43. P. 214.
- Bewley G.P., Lathrop D.P., Sreenivasan K.R. // Nature. 2006. V. 441:588. Р. 2006.
- Maksimenko V.V., Zagaynov V.A., Agranovski I.E. // Phys. Rev. A. 2013. V. 88. Iss. 5. P. 053823.
- Giannelli L., Paladino E., Grajcar M. et al. // Phys. Rev. Research. 2024. V. 6. P. 013008. arXiv:2302.10973v3 [quant-ph] 4 Apr 20
Supplementary files



