Evolution of Macroscopic Properties of the System During Sol-Gel Synthesis of Lead Zirconate Titanate Ceramics Precursor
- Authors: Paramonova N.D.1,2, Danilov E.A.1, Vartanian M.A.2
-
Affiliations:
- Joint Stock Company “Research Institute of Graphite-Based Structural Materials “NIIgraphite”
- FGBOU VO “Mendeleev Russian Chemical Technology University”
- Issue: Vol 99, No 8 (2025)
- Pages: 1170-1178
- Section: CHEMICAL KINETICS AND CATALYSIS
- Submitted: 06.11.2025
- Published: 15.08.2025
- URL: https://journals.eco-vector.com/0044-4537/article/view/695888
- DOI: https://doi.org/10.7868/S3034553725080065
- ID: 695888
Cite item
Abstract
The influence of the amount of hydrolyzing agent on the kinetics of hydrolysis of lead zirconate-titanate precursor solution is considered from the point of view of the rate of change of hydrodynamic diameters of primary particles of the sol formed at the first stage, evolution of particle size distributions, rheological and optical properties of the colloidal systems. It is shown that changing the ratio of hydrolyzing agent: organometallic compounds is an effective controlling factor at the early stage of sol-gel-synthesis of piezoceramics of lead zirconate-titanate system and allows to obtain gel with controlled speed and necessary particle sizes.
About the authors
N. D. Paramonova
Joint Stock Company “Research Institute of Graphite-Based Structural Materials “NIIgraphite”; FGBOU VO “Mendeleev Russian Chemical Technology University”
Email: paramonova-nd@mail.ru
Moscow, Russia; Moscow, Russia
E. A. Danilov
Joint Stock Company “Research Institute of Graphite-Based Structural Materials “NIIgraphite”Moscow, Russia
M. A. Vartanian
FGBOU VO “Mendeleev Russian Chemical Technology University”Moscow, Russia
References
- Воротилов К.А., Мухортов В.М., Сигов А.С. Интегрированные сегнетоэлектрические устройства. М.: Энергоатомиздат, 2011. 175 с.
- Головнин В.А., Каплунов И.А., Малышкина О.В., Педько Б.Б. // Вестн. ТвГУ, Серия “Физика”. 2010. Вып. 11. С. 47.
- Izyumskaya N., Alivov Y.-I., Cho S.-J. et al. // Critical Reviews in Solid State and Materials Sciences. 2007. V. 32. № 3. P. 111. http://doi.org/10.1080/10408430701707347
- Naveen Kumar B., Babu T., Balgovind Tiwari, Choudhary R.N.P. // Ferroelectrics. 2024. V. 618. P. 125. https://doi.org/10.1080/00150193.2023.2271321
- Yu S., Yao K., Shannigrahi S. et al. // J. of Materials Research. 2003. V. 18. № 3. P. 737. http://dx.doi.org/10.1557/JMR.2003.0100
- Головнин В.А., Каплунов И.А., Малышкина О.В., и др. Физические основы, методы исследования и практическое применение пьезоматериалов. М.: Техносфера, 2016. 217 с.
- Барабанова Е.В., Малышкина О.В., Топчиев А.А., и др. // Физика и технология наноматериалов и структур. 2017. Т. 1. С. 28.
- Alvarez Roca R., Botero E.R., Guerrero F., Guerra J.D.S. et al. // J.of Applied Physics. 2009. V. 105. P. 014110. https://doi.org/10.1063/1.3063693
- Mirzaei A., Bonyani M., Torkian S. // Processing and Application of Ceramics. 2016. V. 10 (1). P. 9. http://doi.org/10.2298/PAC1601009M
- Ion E., Malic B., Kosec M. // J. of the European Ceramic Society. 2007. V. 27. P. 4349. https://doi.org/10.1016/j.jeurceramsoc.2007.02.158
- Chuan G.W. Structure and Properties of Lead Zirconate Titanate Thin Films by Pulsed Laser Deposition // A Thesis submitted for the degree of Doctoral of Philosophy / National University of Singapore. 2005. 119 p.
- Prabu M., Banu I.B.S., Vijayaraghavan G.V. et al. // J. of Nanoscience and Nanotechnology. 2013. V. 13(3). P. 1938. https://doi.org/10.1166/jnn.2013.7124
- Piticescu R.M., Piticescu R.R., Taloi D., Badilita V. // Nanotechnology. 2003. V. 14(2). P. 312. https://doi.org/10.1088/0957-4484/14/2/341
- Kim E.H., Moon C.W., Lee J.G. et al. // Polyhedron. 2020. V. 177. P. 114270. https://doi.org/10.1016/j.poly.2019.114270
- Peyton R., Guarepi V., Videla F., Torchia G.A. // Optics & Laser Technology. 2020. V. 125. P. 106059. https://doi.org/10.1016/j.optlastec.2020.106059
- Ma Y., Song J., Wang X. et al. // Coatings. 2021. V. 11(8). P. 944. https://doi.org/10.3390/coatings11080944
- Максимов А.И., Мошников В.А., Таиров Ю.М., Шилова О.А. Основы золь-гель-технологии нанокомпозитов. СПб: ООО “Техномедиа”; Элмор, 2008. 255 с.
- Котова Н.М., Воротилов К.А., Серегин Д.С., Сигов А.С. // Неорган. материалы. 2014. Т. 50. № 6. С. 661. [Kotova N.M., Vorotilov K.A., Seregin D.S., Sigov A.S. // Inorganic Materials. 2014. V. 50. № 6. P. 612]. https://doi.org/10.1134/S0020168514060107.
- Спиридонов Н.А., Гусакова Л.Г., Погибко В.М. и др. // Наносистемы, наноматериалы, нанотехнологии. 2012. Т. 10. № 1. С. 115.
- Verardi P., Dinescu M., Craciun F. // Applied Surface Science. 2000. V. 154–155. P. 514–518. https://doi.org/10.1016/s0169-4332(99)00415-8
- Piticescu R.M., Moisin A.M., Taloi D. et al. // J. of the European Ceramic Society. 2004. V. 24. № 6. P. 931. https://doi.org/10.1016/S0955-2219(03)00545-4
- Chung C.-C. Microstructural Evolution in Lead Zirconate Titanate (PZT) Piezoelectric Ceramics: Ph.D., University of Connecticut, 2014.
- Sangsubun C., Watcharapasorn A., Naksata M. et al. // Ferroelectrics. 2007. № 356. P. 197. https://doi.org/10.1080/00150190701512318
- van der Veer E., Noheda B., Acuautla M. // J. of Sol-Gel Science and Technology. 2021. V. 100. P. 517. https://doi.org/10.1007/s10971-021-05651-6
- Gatea H.A. // IOP Conference Series: Materials Science and Engineering. 2020. V. 928. P. 072007. https://doi.org/10.1088/1757-899X/928/7/072007
- Navas D., Fuentes S., Castro-Alvarez A., Chavez-Angel E. // Gels. 2021. V. 7(4). P. 275.
- Suarez-Gomez A., Sato-Berru R., Toscano R.A. et al. // J. of Alloys and Compounds. 2008. № 450. P. 380. https://doi.org/10.1016/j.jallcom.2006.10.143
- Sanchez C., Livage J., Henry M., Babonneau F. // J. of Non-Crystalline Solids. 1988. V. 100. № 1–3. P. 65. https://doi.org/10.1016/0022-3093(88)90007-5
- Livage J., Henry M., Sanchez C. // Progress in Solid State Chemistry. 1988. № 18(4). P. 259. https://doi.org/10.1016/0022-3093(88)90007-5
- Симоненко Е.П., Дербенев А.В., Симоненко Н.П. и др. // Журн. неорган. химии. 2015. Т. 60. № 12. С. 1579. [Simonenko E.P., Derbenev A.V., Simonenko N.P. et al. // Russian Journal of Inorganic Chemistry. 2015. V. 60. № 12. P. 1444.] https://doi.org/10.1134/S0036023615120220.
- Бессуднова Е.В., Шикина Н.В., Исмагилов З.Р. // Альтернативная энергетика и экология. 2014. № 7 (147). С. 39.
- Najafi A., Sharifi F., Mesgari-Abbasi S., Khalaj G. // Ceramics International. 2022. V. 48. № 18. P. 26725–26731. https://doi.org/10.1016/j.ceramint.2022.05.367
- Zeng Z., Lan M., Zhang Q. et al. // J. of Magnetism and Magnetic Materials. 2022. V. 563. P. 169904. https://doi.org/10.1016/j.jmmm.2022.169904
- Zanurin A., Johari N.A., Alias J. et al. // Materials Today: Proceedings. 2022. V. 48. Part 6. P. 1849. https://doi.org/10.1016/j.matpr.2021.09.203
- Tihtih M., Ibrahim J.F.M., Kurovics E., Abdelfattah M. // J. of Physics: Conference Series, 4th International Conference on Rheology and Modeling of Materials (ic-rmm4) 7–11 October 2019, Miskolc-Lillafured, Hungary. 2020. V. 1527. P. 012043. https://doi.org/10.1088/1742-6596/1527/1/012043
- Alves A.K., Berutti F.A., Bergmann C.P. // Particulate Science and Technology. 2005. V. 23(4). P. 351. https://doi.org/10.1080/02726350500212913
- Farrukh M.A., Mehmood K., Altaf A., Khadim S. // Silicon. 2019. V. 11(6). P. 2591. https://doi.org/10.1007/s12633-018-0050-7
- Фаустова Ж.В., Слижов Ю.Г. // Неорган. материалы. 2017. Т. 53. № 3. С. 276. https://doi.org/10.7868/S0002337X17030058 [Faustova Yu., Slizhov G. // Inorgan. Materials. 2017. V. 53(3). P. 287]. https://doi.org/10.1134/S0020168517030050.
- Lazareva S.V., Shikina N.V., Tatarova L.E., Ismagilov Z. // Eurasian Chemico-Technological Journal. 2017. V. 19(4). P. 295. http://doi.org/10.18321/ectj677
- Kulkarni S., Duttagupta S., Phatak G.J. // J. of Sol-Gel Science and Technology. 2015. V. 74(1). P. 94. https://doi.org/10.1007/s10971-014-3581-4
- Zhang Q., Huang Z., Whatmore R.W. // J. of Sol-Gel Science and Technology. 2002. V. 23. P. 49. https://doi.org/10.1023/A:1015161532663
- Zhang Q., Huang Z., Whatmore R.W. // Ibid. 2002. V. 24. P. 135. https://doi.org/10.1023/A:1013799417981
- Yun J.S., Park C.K., Jeong Y.H. et al. // Material Letters. 2014. V. 137. P. 178. https://doi.org/10.1016/j.matlet.2014.08.139
- Huang Z., Zhang Q., Whatmore R.W. // Integrated Ferroelectrics. 2001. № 36 (1–4). P. 153. https://doi.org/10.1080/10584580108015537
- Yang S., Mo D., Tang X. // J. of Materials Science. 2002. № 37(18). P. 3841. https://doi.org/10.1023/a:1019682817298
- Щукин Е.Д., Перцов А.В., Амелина Е.А. Коллоидная химия. М.: Высш. школа, 2004. 445 с.
- Назаров В.В. Коллоидная химия. М.: ДеЛи плюс, 2015. 250 с.
Supplementary files



