Эффект стабилизации наночастицами суспензии микроразмерных частиц допированного диоксида церия для электрофореза
- Авторы: Калинина Е.Г.1,2
-
Учреждения:
- Институт электрофизики Уральского отделения Российской академии наук
- Уральский федеральный университет имени первого Президента России Б. Н. Ельцина
- Выпуск: Том 99, № 8 (2025)
- Страницы: 1207-1213
- Раздел: ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ, СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР И НАНОМАТЕРИАЛОВ
- Статья получена: 06.11.2025
- Статья опубликована: 15.08.2025
- URL: https://journals.eco-vector.com/0044-4537/article/view/695893
- DOI: https://doi.org/10.7868/S3034553725080115
- ID: 695893
Цитировать
Полный текст
Аннотация
Представлены результаты исследований дзета-потенциала, рН и характеристик электрофоретического осаждения (ЭФО) суспензий микроразмерного порошка Ce0.8Sm0.2O1.9 (SDC-m) при добавлении различной доли наночастиц SDC-n. Показан эффект стабилизации суспензии микроразмерных частиц за счет внесения высокозаряженных наночастиц. Установлен немонотонный характер изменения толщины покрытия при ЭФО из суспензии SDC-m/SDC-n с ростом содержания наночастиц SDC-n при тенденции увеличения дзета-потенциала и сопротивления суспензии. Показано, что наибольшая толщина сплошного и однородного покрытия SDC достигается при доле наночастиц SDC-n в 5 мас. %.
Об авторах
Е. Г. Калинина
Институт электрофизики Уральского отделения Российской академии наук; Уральский федеральный университет имени первого Президента России Б. Н. Ельцина
Email: jelen456@yandex.ru
Екатеринбург, Россия; Екатеринбург, Россия
Список литературы
- Besra L., Liu M. // Prog. Mater. Sci. 2007. V. 52. № 1. P. 1. https://doi.org/10.1016/j.pmatsci.2006.07.001.
- Aznam I., Mah J.C.W., Muchtar A. et al. // J. Zhejiang Univ. Sci. A 2018. V. 19. № 11. P. 811. https://doi.org/10.1631/jzus.A1700604.
- Kalinina E.G., Pikalova E. Yu. // Russ. Chem. Rev. 2019. V. 88. № 12. P. 1179. https://doi.org/10.1070/RCR4889 [Калинина Е.Г., Пикалова Е.Ю. // Успехи химии. 2019. Т. 88. № 12. С. 1179. https://doi.org/10.1070/RCR4889]/
- Lu Z., Zhou X., Fisher D. et al. // Electrochem. Commun. 2010. V. 12. № 2. P. 179. https://doi.org/10.1016/j.elecom.2009.11.015.
- Pikalova E. Yu., Kalinina E.G. // Int. J. Energy Prod. Manag. 2019. V. 4. № 1. P. 1. https://doi.org/10.2495/EQ-V4-N1-1-27.
- Solovyev A.A., Rabotkin S.V., Shipilova A.V., Ionov I.V. // Int. J. Electrochem. Sci. 2019. V. 14. № 1. P. 575. https://doi.org/10.20964/2019.01.03.
- Hu S., Li W., Finklea H., Liu X. // Adv. Colloid Interface Sci. 2020. V. 276. P. 102102. https://doi.org/10.1016/j.cis.2020.102102.
- Pikalova E. Yu., Kalinina E.G. // Russ. Chem. Rev. 2021. V. 90. P. 703. https://doi.org/10.1070/rcr4966. [Пикалова Е.Ю., Калинина Е.Г. // Успехи химии. 2021. Т. 90. С. 703. https://doi.org/10.1070/rcr4966].
- Erpalov M.V., Tarutin A.P., Danilov N.A. et al. // Russ. Chem. Rev. 2023 V. 92. № 10. P. RCR5097. https://doi.org/10.59761/RCR5097. [Ерпалов М.В., Тарутин А.П., Данилов Н.А. и др. // Успехи химии. 2023. Т. 92. № 10. С. RCR5097. https://doi.org/10.59761/RCR509.7].
- Zhuravlev V.D., Bamburov V.G., Ermakova L.V., Lobachevskaya N.I. // Phys. At. Nucl. 2015. V. 78. № 12. P. 1389. https://doi.org/10.1134/s1063778815120169.
- Wain-Martin A., Morán-Ruiz A., Vidal K. et al. // Solid State Ion. 2017. V. 313. P. 52. https://doi.org/10.1016/j.ssi.2017.08.021.
- Kalinina E.G., Pikalova E. Yu. // Russ. J. Phys. Chem. A 2021. V. 95. № 9. P. 1942. https://doi.org/10.1134/S0036024421090077. [Калинина Е.Г., Пикалова Е.Ю. // Журн. физ. химии. 2021. Т. 95. № 9. С. 1426. https://doi.org/10.31857/S0044453721090077].
- Lyklema, J. // Colloids Surf. 2011. V. 376. № 1–3. P. 2. https://doi.org/10.1016/j.colsurfa.2010.09.021.
- Will J., Hruschka M.K.M., Gubler L., Gauckler, L.J. // J. Am. Ceram. Soc. 2004. V. 84. № 2. P. 328. https://doi.org/10.1111/j.1151-2916.2001.tb00658.x.
- Zhitomirsky I., Petric A. // J. Eur. Ceram. Soc. 2000. V. 20. № 12. P. 2055. https://doi.org/10.1016/S0955-2219(00)00098-4.
- Ichiboshi H., Myoujin K., Kodera T., Ogihara T. // Key Eng. Mater. 2013. V. 566. P. 137. https://doi.org/10.4028/www.scientific.net/KEM.566.137.
- Panigrahi S., Bhattacharjee S., Besra L. et al. // J. Eur. Ceram. Soc. 2010. V. 30. № 5. P. 1097. https://doi.org/10.1016/j.jeurceramsoc.2009.06.038.
- Osipov V.V., Kotov Yu.A., Ivanov M.G. et al. // Laser Phys. V. 16. № 1. P. 116. https://doi.org/10.1134/S1054660X06010105.
- Kalinina E.G., Samatov O.M., Safronov A.P. // Inorg. Mater. 2016. V. 52. № 8. P. 858. https://doi.org/10.1134/S0020168516080094. [Калинина Е.Г., Саматов О.М., Сафронов А.П. // Неорган. материалы. 2016. Т. 52. № 8. С. 922. https://doi.org/10.7868/S0002337X16080091.]
- Pikalova E., Osinkin D., Kalinina E. // Membranes. 2022. V. 12. P. 682. https://doi.org/10.3390/membranes12070682.
- Tohver V., Smay J.E., Braem A. et al. // PNAS. 2001. V. 98. № 16. P. 8950. https://doi.org/10.1073/pnas.151063098.
- Zhang F., Long G.G., Jemian P.R. et al. // Langmuir. 2001. V. 24. № 13. P. 6504. https://doi.org/10.1021/la702968n.
- Trulsson M., Jönsson B., Labbez C. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 541. https://doi.org/10.1039/C2CP42404E.
- Hamaker H.C. // J. Chem. Soc. Faraday Trans. 1940. V. 35. P. 279. https://doi.org/10.1039/tf9403500279.
- Safronov A.P., Kalinina E.G., Smirnova T.A. et al. // Russ. J. Phys. Chem. A. 2010. V. 84. № 12. P. 2122. https://doi.org/10.1134/S0036024410120204. [Сафронов А.П., Калинина Е.Г., Смирнова Т.А. и др. // Журн. физ. химии. 2010. Т. 84. № 12. С. 2319.]
- Koelmans H., Overbeek J. Th.G. // Faraday Discuss. 1954. V. 18. P. 52. https://doi.org/10.1039/df9541800052.
- Mizuguchi J., Sumi K., Muchi T. // J. Electrochem. Soc. 1983. V. 130. № 9. P. 1819. https://doi.org/10.1149/1.2120105.
- De D., Nicholson P.S. // J. Am. Ceram. Soc. 2004. V. 82. № 11. P. 3031. https://doi.org/10.1111/j.1151-2916.1999.tb02198.x.
Дополнительные файлы




