Setting the oxidation state of 99Tc adsorbed on Pt, by X-ray photoelectron spectroscopy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

An electrochemical method for the concentration of technetium 99mTc ions formed by neutron irradiation of a molybdenum target and required for visualization of internal organs in radiopharmaceutical diagnostics has been proposed. Technetium extraction was carried out by electrochemical method. It was found by X-ray photoelectron spectroscopy that the release of technetium at the cathode, due to electrochemical reduction of pertechnetate ions, occurs in the form of TcO2⋅xH2O. Due to oxidation of surface layers by air oxygen, some amount of Tc(VII) is formed in them: the ratio of Tc(IV): Tc(VII) amounts to 3:7. Under optimal conditions of the process, the efficiency of technetium extraction from the solution containing excess molybdate ions reached 90% during 0.5 h. Since the concentration of molybdenum compounds is small, the reduction of pertechnetate ions occurs with diffusion limitations. The diffusion coefficient of TcO4– ions determined by the rotating disk electrode method was 2.14×10–5 cm2 s–1.

About the authors

S. V. Veselov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; FGBOU VO “D. I. Mendeleev Russian University of Chemical Technology”

Moscow, Russia; Moscow, Russia

A. Yu. Teterin

SIC “Kurchatov Institute”

Email: antonxray@yandex.ru
Moscow, Russia

K. I. Maslakov

SIC “Kurchatov Institute”; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

Yu. A. Teterin

SIC “Kurchatov Institute”; Lomonosov Moscow State University

Moscow, Russia; Moscow, Russia

V. V. Kuznetsov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences; FGBOU VO “D. I. Mendeleev Russian University of Chemical Technology”

Moscow, Russia; Moscow, Russia

K. E. German

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Москва, Россия

References

  1. Chakravarty R., Venkatesh M., Dash A. // J. Radioanal. Nucl. Chem. Art. 2011. V. 290. № 1. P. 45. https://doi.org/10.1007/s10967-011-1113-z
  2. Hendee W.R., Ritenour E.R. Medical imaging physics. John Wiley & Sons, 2003. 536 p.
  3. Mengesha W.G. // Am.J. Mod. Phys. 2024. V. 13. № 2. P. 27. https://doi.org/10.11648/j.ajmp.20241302.13
  4. Vaz S.C., Oliveira R., Herrmann K., Veit-Haibach P. //The British journal of radiology. 2020. V. 93. № 1110. P. 20200095. https://doi.org/10.1259/bjr.20200095
  5. Duatti A. // Nucl. Med. Biol. 2021. V. 92. P. 202. https://doi.org/10.1016/j.nucmedbio.2020.05.005.
  6. Кодина Г.Е., Малышева А.О. // Ведомости Научного центра экспертизы средств медицинского применения. 2019. Т. 9. № 4. С. 216. https://doi.org/10.30895/1991-2919-2019-9-4-216-230
  7. Eckelman W.C. // J. Am. Coll. Cardiol. Img. 2009. V. 2. № 3. P. 364–8. https://doi.org/10.1016/j.jcmg.2008.12.013.
  8. Arano Y. // Ann. Nucl. Med. 2002. V.16. № 2. P. 79. https://doi.org/10.1007/BF02993710
  9. Abubakr A., Othman A.I., Ewedah T.M. // ERU Res. J. 2024. https://doi.org/10.2967/jnumed.112.110338
  10. Pillai M.R.A., Dash A., Knapp F.F.R. // J. of Nucl. Med. 2013. V. 54. № 2. P. 313. https://doi.org/10.2967/jnumed.112.110338
  11. Boschi A., Martini P., Pasquali M., Uccelli L. // Drug Dev. Ind. Pharm. 2017. V. 43. № 9. P. 1402. https://doi.org/10.1080/03639045.2017.1323911
  12. Hasan S., Prelas M.A. // SN Appl. Sci. 2020. V. 2. № 11. P. 1782. https://doi.org/10.1007/s42452-020-03524-1
  13. Chakravarty R., Dash A., Venkatesh M. // Nucl. Med. Biol. 2010. V. 37. № 1. P. 21. https://doi.org/10.1016/j.nucmedbio.2009.08.010
  14. Russell C.D. // The Int. J. of Appl. Radiat. Isotop. 1982. V. 33. № 10. P. 883.
  15. Kuznetsov V.V., Volkov M., German K. et all. // J. Electroanal. Chem. 2020. V. 869. P. 114090. https://doi.org/10.1016/j.jelechem.2020.114090
  16. Волков М.А., Кузнецов В.В., Жирухин Д.А., Герман К.Э. // Успехи в химии и химической технологии. 2018. С. 203.
  17. Chotkowski M., Czerwiński A. Technetium Coordinated by Inorganic Ligands in Aqueous and Nonaqueous Solutions. In: Electrochemistry of Technetium. Monographs in Electrochemistry. Springer. Cham. 2021. P. 31. https://doi.org/10.1007/978-3-030-62863-5_3
  18. Patra S., Chakraborty S., Chakravarty R. // Am J. Nucl. Med. Mol. Imag. 2024. V. 14. № 5. P. 282. https://doi.org/10.62347/XITW6701
  19. Kuznetsov V.V. Chotkowski M., Poineau F. et al. // J. Electroanal. Chem. 2021. V. 893. P. 115284. https://doi.org/10.1016/j.jelechem.2021.115284
  20. Gurbanova U.M. Babanly D.M., Huseynova R.G., Tagiyev D.B. // J. Electrochem. Sci. Eng. 2021. V. 11. № 1. P. 39–49. https://doi.org/10.5599/jese.912
  21. Chotkowski M., Grdeń M., Wrzosek B. // J. Electroanal. Chem. 2018. V. 829. P. 148. https://doi.org/10.1016/j.jelechem.2018.10.003
  22. Kuznetsov V.V. German K.E., Nagovitsyna O.A. et al. // Inorg. Chem. 2023. V. 62. № 45. P. 18660. https://doi.org/10.1021/acs.inorgchem.3c03001
  23. Engelmann M.D., Metz L.A., Delmor J.E. et al. // J. Radioanal. Nucl. Chem. 2008. V. 276. P. 493. https://doi.org/10.1007/s10967-008-0532-y
  24. Chatterjee S., Hall G.B., Johnson I.E. et al. // Inorg. Chem. Front. 2018. V. 5. № 9. P. 2081.
  25. https://doi.org/10.1039/C8QI00219C
  26. Makarov A., Safonov A., Sitanskaia A., Martynov K. et al. // Prog. In Nucl. Energy. 2022. V. 152. Р. 104398. https://doi.org/10.1016/j.pnucene.2022.104398.
  27. Данилов С.С., Фролова А.В., Тетерин А.Ю. и др. // Радиохимия. 2021. Т. 63. № 6. С. 582. https://doi.org/10.31857/S0033831121060101.
  28. Герасимов В.Н., Крючков С.В., Кузина А.Ф. и др. // Докл. АН СССР. 1982. Т. 266. C. 148.
  29. Wester D.W., White D.H., Miller F.W. et all. // Inorg. Chim. Acta. 1987. V. 131. № 2. P. 163. https://doi.org/10.1016/s0020-1693(00)96019-5.
  30. Thompson M., Nunn A.D., Treher E.N. // Anal. Chem. 1986. V. 58. P. 3100. https://doi.org/10.1021/AC00127A041.
  31. Shirley D.A. // Phys. Rev. B. 1972. V. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709.
  32. Панов А.П. Пакет программ обработки спектров SPRO и язык программирования SL. Препринт. М.: Ин-т атом. Энергии. ИАЭ-6019/15, 1997. 31 c.
  33. Немошкаленко В.В., Алешин В.Г. Электронная спектроскопия кристаллов. Киев: Наукова думка, 1976. 336 с.
  34. Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. // At. Data Nucl. Data Tables. 1979. V. 23. P. 443. https://doi.org/10.1016/0092-640X(79)90027-5.
  35. Герасимов В.Н., Крючков С.В., Герман К.Э. и др. Рентгеноэлектронное исследование строения комплексных соединений технеция: Препринт. М.: Ин-т атом. Энергии. ИАЭ-5041/9. 1990. 32 с.
  36. Makarov A.V., Safonov A.V., Konevnik Yu.V. et al. // J. of Hazard. Mat. 2021. V. 401. P. 123436. https://doi.org/10.1016/j.jhazmat.2020.123436.
  37. Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений. Справочник. М.: Химия, 1984. 256 с.
  38. Sosulnikov M.I., Teterin Yu.A. // J. of Electr. Spectr. and Rel. Phen. 1992. V. 59. P. 111. https://doi.org/10.1016/0368-2048(92)85002-O.
  39. Childs B.C., Braband H., Lawler K. et al. // Inorg. Chem. 2016. V. 55. № 20. P. 10445. https://doi.org/10.1021/acs.inorgchem.6b01683.
  40. Rodriguez E.E., Poineau F., Llobet A. et al. // J. Am. Chem. Soc. 2007. V. 129. P. 10244. https://doi.org/10.1021/ja0727363.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences