Physico-Chemical Methods for Analyzing the Content of Trace Impurities in Hydrogen Peroxide
- Authors: Glushko A.N.1,2, Goguev N.S.2,3, Buryak A.K.1, Huseynov S.L.3
-
Affiliations:
- FGBUN Institute of Physical Chemistry and Electrochemistry A. N. Frumkin RAS
- JSC TsENKI – “Research and Production Center for Rocket Fuel Components”
- JSC “GNIICHTEOS”
- Issue: Vol 99, No 8 (2025)
- Pages: 1248-1257
- Section: PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
- Submitted: 06.11.2025
- Published: 15.08.2025
- URL: https://journals.eco-vector.com/0044-4537/article/view/695899
- DOI: https://doi.org/10.7868/S3034553725080175
- ID: 695899
Cite item
Abstract
For the development of a series of knowledge-intensive areas of industry in the Russian Federation there is a need for hydrogen peroxide with a low content of impurities (up to 1×10–8%). The experience of production and quality control of such hydrogen peroxide at domestic enterprises is currently absent, in this connection the issues of assessment of the possibility of application and adaptation of existing methods of determining the content of microimpurities in hydrogen peroxide and introduction of modern analytical equipment are relevant. Commercially available on the territory of the Russian Federation brands of hydrogen peroxide have been studied.
About the authors
A. N. Glushko
FGBUN Institute of Physical Chemistry and Electrochemistry A. N. Frumkin RAS; JSC TsENKI – “Research and Production Center for Rocket Fuel Components”
Email: 167311@gmail.com
Moscow, Russia; Moscow, Russia
N. S. Goguev
JSC TsENKI – “Research and Production Center for Rocket Fuel Components”; JSC “GNIICHTEOS”Moscow, Russia; Moscow, Russia
A. K. Buryak
FGBUN Institute of Physical Chemistry and Electrochemistry A. N. Frumkin RASMoscow, Russia
Sh. L. Huseynov
JSC “GNIICHTEOS”Moscow, Russia
References
- Tingting Li, Yangfan Li, Fan Zhang et al. // Crystals. 2023. V. 13. № 7. P. 1127. https://doi.org/10.3390/cryst13071127.
- Сагындыков А.Б., Калкозова Ж.К., Яр-Мухамедова Г.Ш. и др. // Журн. техн. физики. 2017. Т. 87. № 11. С. 1673. https://doi.org/10.21883/JTF.2017.11.45127.2211
- Koval V., Yakymenko Y., Ivashchuk A. et al. // IEEE39th Int. Conf. on Electr. and Nanotech. 2019. P. 282. https://doi.org/10.1109/ELNANO.2019.8783506
- Binoy Bera // Int. J. of Appl. Nanotechnology. 2019. V. 5. № 1. P. 8. https://doi.org/
- Dusheiko M.G., Koval V.M., Obukhova T.Y. // Semiconductor Phys., Quantum Electr. and OE. 2022. V. 25. № 1. P. 58. https://doi.org/ 10.15407/spqeo25.01.058
- Lidsky D., Cain J.M., Hutchins-Delgado T. et al. // Nanotechnology. 2023. V. 34. № 6. P. 8. https://doi.org/10.1088/1361-6528/ac810c.
- Rogovoi M.S., Tulenin, S. S., Novotorkina D.A. // Russian J. of Appl. Chem. 2020. V. 93. № 10. P. 1533. https://doi.org/10.1134/S1070427220100079
- Никонов А.М., Наумова О.В., Генералов В.М. и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исслед.2020. № 4. С. 24. https://doi.org/10.31857/s1028096020040111
- Baraissov Z., Pacco A., Koneti S. et al. // ACS Appl. Mater. Interfaces. 2019. V. 11. № 40. P. 36839. https://doi.org/10.1021/acsami.9b11934.
- Шангереева Б.А., Муртазалиев А.И., Шангереев Ю.П. // Инновационная наука. 2015. № 11/2015. C. 133.
- Saidov K., Erofeev I., Aabdin Z. et al. // Advanced Functional Mater. 2023. V. 34. № 12. P. 9. https://doi.org/10.1002/adfm.202310838
- Прохоров Л.Г., Светаев А.В., Лунин Б.С. и др. // Физ. и техн. полупроводников. 2020. Т. 54. № 1. С. 74. https://doi.org/10.21883/ftp.2020.01.48778.9245
- Leonardi A.A., Faro M.J.L., Irrera A. // Nanomaterials. 2021. V. 11. № 2. P. 383 https://doi.org/10.3390/nano11020383.
- Yajun Xu, Qichen Zhao, Jianian Chen et al. // Physica Scripta. 2024. V. 99, № 8. P. 085914. https://doi.org/10.1088/1402-4896/ad5b9a.
- Okninski A., Surmacz P., Bartkowiak B. et al. // Aerospace. 2021. V. 8. P. 234. https://doi.org/10.3390/aerospace8090234.
- Kopacz W., Okninski A., Kasztankiewicz A. et al. // FirePhysChem. 2022. V. 2. № 1. P. 56. https://doi.org/10.1016/j.fpc.2022.03.009.
- Levikhin A.A., Boryaev A.A. // Adsorption. 2024. V. 30. P. 2187. https://doi.org/10.1007/s10450-024-00547-7.
- Parzybut A., Surmacz P. // Space Technology Library. 2024. V. 44. P. 217. https://doi.org/10.1007/978-3-031-62574-9_8
- ГОСТ Р 50632–93 Водорода Пероксид Высококонцентрированный. Технические условия. Государственный стандарт Российской Федерации. дата введения 30.12.1993 // Госстандарт России. Москва. C. 51.
- ГОСТ 177–88 Водорода перекись. Технические условия. Межгосударственный Стандарт: дата введения 1989–07–01. Издание официальное. Москва. C. 12.
- ГОСТ 10929–76 Водорода Пероксид. Технические условия. Государственный Стандарт Союза ССР. дата введения 30.01.76. Издание официальное. Государственный комитет СССР по управлению качеством продукции и стандартам. Москва. C. 12
- SEMI C30-0301 Specifications and guidelines for hydrogen peroxide. 2001. P. 7.
Supplementary files



