Nucleophilic Addition of Aliphatic Diamines NH2(CH2)nNH2 (n = 6, 9) to Nitrilium Derivatives of the closo-Decaborate Anion [2-B10H9NCR]– (R = CH3, C2H5, nC3H7)
- Authors: Voinova V.V.1, Selivanov N.A.1, Bykov A.Y.1, Klyukin I.N.1, Zhdanov A.P.1, Zhizhin K.Y.1, Kuznetsov N.T.1
- 
							Affiliations: 
							- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
 
- Issue: Vol 68, No 10 (2023)
- Pages: 1358-1363
- Section: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://journals.eco-vector.com/0044-457X/article/view/666164
- DOI: https://doi.org/10.31857/S0044457X23600883
- EDN: https://elibrary.ru/LNEGCS
- ID: 666164
Cite item
Abstract
The reaction of a number of nitrilium derivatives of the closo-decaborate anion with hexamethylene- and nonamethylenediamine has been studied. It has been shown that the process proceeds with the functionalization of both amino groups of the nucleophile to form amidines of the type (Bu4N)2[B10H9NH=C(R)NH (CH2)nNH(R)C=NHB10H9] (R = CH3, C2H5, nC3H7; n = 6, 9). Target compounds have been characterized by high resolution multinuclear NMR and ESI mass spectrometry.
About the authors
V. V. Voinova
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
N. A. Selivanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
A. Yu. Bykov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
I. N. Klyukin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								Россия, 119991, Москва, 
Ленинский пр-т, 31						
A. P. Zhdanov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
K. Yu. Zhizhin
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
														Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
							Author for correspondence.
							Email: zhdanov@igic.ras.ru
				                					                																			                												                								119991, Moscow, Russia						
References
- Wang Z., Liu Y., Zhang H. et al. // J. Colloid. Interface Sci. 2020. V. 566. P. 135. https://doi.org/10.1016/j.jcis.2020.01.047
- Wang L., Sun W., Duttwyler S. et al. // J. Solid State Chem. 2021. V. 299. P. 122167. https://doi.org/10.1016/j.jssc.2021.122167
- Wang Z., Wang Z., Ma X. et al. // Int. J. Hydrogen Energy. 2021. V. 46. № 60. P. 30750. https://doi.org/10.1016/j.ijhydene.2021.06.196
- Deng X., Yao F., Wang Z. et al. // J. Mater. Chem. A. 2023. V. 11. № 2. P. 809. https://doi.org/10.1039/D2TA07827A
- Jankowiak A., Baliński A., Harvey J.E. et al. // J. Mater. Chem. C. 2013. V. 1. № 6. P. 1144. https://doi.org/10.1039/c2tc00547f
- Korolenko S.E., Zhuravlev K.P., Tsaryuk V.I. et al. // J. Lumin. 2021. V. 237. P. 118156. https://doi.org/10.1016/j.jlumin.2021.118156
- Jacob L., Rzeszotarska E., Koyioni M. et al. // Chem. Mater. 2022. V. 34. № 14. P. 6476. https://doi.org/10.1021/acs.chemmater.2c01165
- Duchêne L., Remhof A., Hagemann H. et al. // Energy Storage Mater. 2020. V. 25. P. 782. https://doi.org/10.1016/j.ensm.2019.08.032
- Toyama N., Kim S., Oguchi H. et al. // J. Energy Chem. 2019. V. 38. P. 84. https://doi.org/10.1016/j.jechem.2019.01.009
- Brighi M., Murgia F., Łodziana Z. et al. // J. Power Sources. 2018. V. 404. № August. P. 7. https://doi.org/10.1016/j.jpowsour.2018.09.085
- Moury R., Gigante A., Hagemann H. // Int. J. Hydrogen Energy. 2017. V. 42. № 35. P. 22417. https://doi.org/10.1016/j.ijhydene.2017.02.044
- Deysher G., Chen Y.-T., Sayahpour B. et al. // ACS Appl. Mater Interfaces. 2022. V. 14. № 42. P. 47706. https://doi.org/10.1021/acsami.2c12759
- Evamarie Hey-Hawkins C.V.T. // Boron-Based Compounds: Potential and Emerging Applications in Medicine. John Wiley & Sons Ltd, 2018.
- Lin F., Shen Y., Zhang Y. et al. // Chem. Eur. J. 2018. V. 24. № 3. P. 551. https://doi.org/10.1002/chem.201703802
- Varkhedkar R., Yang F., Dontha R. et al. // ACS Cent Sci. 2022. V. 8. № 3. P. 322. https://doi.org/10.1021/acscentsci.1c01132
- Avdeeva V.V., Garaev T.M., Malinina E.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 1. P. 28. https://doi.org/10.1134/S0036023622010028
- Avdeeva V.V., Garaev T.M., Breslav N.V. et al. // JBIC J. Biol. Inorg. Chem. 2022. https://doi.org/10.1007/s00775-022-01937-4
- Ali F., S Hosmane N., Zhu Y. // Molecules. 2020. V. 25. № 4. P. 828. https://doi.org/10.3390/molecules25040828
- Barth R.F., Mi P., Yang W. // Cancer Commun. 2018. V. 38. № 1. P. 1. https://doi.org/10.1186/s40880-018-0299-7
- Yorov K.E., Zhdanov A.P., Kamilov R.Kh. et al. // ACS Appl Nano Mater. 2022. V. 5. № 8. P. 11529. https://doi.org/10.1021/acsanm.2c02550
- Stepanova M., Dobrodumov A., Averianov I. et al. // Polymers (Basel). 2022. V. 14. № 18. P. 3864. https://doi.org/10.3390/polym14183864
- Popova T.V., Pyshnaya I.A., Zakharova O.D. et al. // Biomedicines. 2021. V. 9. № 1. P. 74. https://doi.org/10.3390/biomedicines9010074
- Mishiro K., Imai S., Ematsu Y. et al. // J. Med. Chem. 2022. V. 65. № 24. P. 16741. https://doi.org/10.1021/acs.jmedchem.2c01586
- Zhizhin K.Yu., Zhdanov A.P., Kuznetsov N.T. // Russ. J. Inorg. Chem. 2010. V. 55. № 14. P. 2089. https://doi.org/10.1134/S0036023610140019
- Olid D., Núñez R., Viñas C. et al. // Chem. Soc. Rev. 2013. V. 42. № 8. P. 3318. https://doi.org/10.1039/C2CS35441A
- Matveev E.Y., Razgonyaeva G.A., Mustyatsa V.N. et al. // Russ. Chem. Bull. 2010. V. 59. № 3. P. 556. https://doi.org/10.1007/s11172-010-0125-0
- Zhdanov A.P., Zhdanova K.A., Bykov A.Y. et al. // Polyhedron. 2018. V. 139. P. 125. https://doi.org/10.1016/j.poly.2017.09.050
- Neumolotov N.K., Selivanov N.A., Bykov A.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 10. P. 1583. https://doi.org/10.1134/S0036023622600861
- Naoufal D., Assi Z., Abdelhai E. et al. // Inorg. Chim. Acta. 2012. V. 383. P. 33. https://doi.org/10.1016/j.ica.2011.10.033
- Kaszyński P., Ringstrand B. // Angew. Chem. Int. Ed. 2015. V. 54. № 22. P. 6576. https://doi.org/10.1002/anie.201411858
- Rzeszotarska E., Novozhilova I., Kaszyński P. // Inorg. Chem. 2017. V. 56. № 22. P. 14351. https://doi.org/10.1021/acs.inorgchem.7b02477
- Kapuściński S., Hietsoi O., Pietrzak A. et al. // Chem. Commun. 2022. V. 58. № 6. P. 851. https://doi.org/10.1039/D1CC06485A
- Hawthorne M.F., Shelly K., Li F. // Chem. Commun (Camb). 2002. № 6. P. 547. http://www.ncbi.nlm.nih.gov/pubmed/12120120
- Avdeeva V.V., Buzin M.I., Dmitrienko A.O. et al. // Chem. Eur. J. 2017. V. 23. № 66. P. 16819. https://doi.org/10.1002/chem.201703285
- Naoufal D., Kodeih M., Cornu D. et al. // J. Organomet Chem. 2005. V. 690. № 11. P. 2787. https://doi.org/10.1016/j.jorganchem.2005.01.041
- Bondarev O., Sevryugina Y.V., Jalisatgi S.S. et al. // Inorg. Chem. 2012. V. 51. P. 9935.
- Prikaznov A.V., Shmal’ko A.V., Sivaev I.B. et al. // Polyhedron. 2011. V. 30. № 9. P. 1494. https://doi.org/10.1016/j.poly.2011.02.055
- Matveev E.Yu., Retivov V.M., Razgonyaeva G.A. et al. // Russ. J. Inorg. Chem. 2011. V. 56. № 10. P. 1549. https://doi.org/10.1134/S0036023611100160
- Kubasov A.S., Matveev E.Yu., Retivov V.M. et al. // Russ. Chem. Bull. 2014. V. 63. № 1. P. 187. https://doi.org/10.1007/s11172-014-0412-2
- Abi-Ghaida F., Laila Z., Ibrahim G. et al. // Dalton Trans. 2014. V. 43. № 34. P. 13087. https://doi.org/10.1039/C4DT00772G
- Abi-Ghaida F., Clément S., Safa A. et al. // J. Nanomater. 2015. V. 2015. № 9. P. 1. https://doi.org/10.1155/2015/608432
- Wilbur D.S., Thakar M.S., Hamlin D.K. et al. // Bioconjugate Chem. 2009. V. 20. № 10. P. 1983. https://doi.org/10.1021/bc9000799
- Li Y., Hamlin D.K., Chyan M.-K. et al. // PLoS One. 2018. V. 13. № 10. P. E0205135. https://doi.org/10.1371/journal.pone.0205135
- Klyukin I.N., Selivanov N.A., Bykov A.Y. et al. // Russ. J. Inorg. Chem. 2020. V. 65. № 10. https://doi.org/10.1134/S0036023620100113
- Ezhov A.V., Vyal’ba F.Y., Kluykin I.N. et al. // Macroheterocycles. 2017. V. 10. № 4–5. https://doi.org/10.6060/mhc171254z
- Daines E.A., Bolotin D.S., Bokach N.A. et al. // Inorg. Chim. Acta. 2018. V. 471. P. 372. https://doi.org/10.1016/j.ica.2017.11.054
- Burianova V.K., Bolotin D.S., Mikherdov A.S. et al. // New J. Chem. 2018. V. 42. № 11. P. 8693. https://doi.org/10.1039/c8nj01018h
- Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1776. https://doi.org/10.1134/S0036023622601106
- Nelyubin A.V., Klyukin I.N., Novikov A.S. et al. // Mendeleev Commun. 2021. V. 31. № 2. P. 201. https://doi.org/10.1016/j.mencom.2021.03.018
- Voinova V.V., Selivanov N.A., Plyushchenko I.V. et al. // Molecules. 2021. V. 26. № 1. P. 248. https://doi.org/10.3390/molecules26010248
- Nelyubin A.V., Selivanov N.A., Bykov A.Yu. et al. // Int. J. Mol. Sci. 2021. V. 22. № 24. P. 13391. https://doi.org/10.3390/ijms222413391
- Nelyubin A.V., Sokolov M.S., Selivanov N.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1751. https://doi.org/10.1134/S003602362260109X
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					

