Low-temperature synthesis and luminescent properties of lanthanum metaphosphate LaP3O9 : Tb

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Promising for inorganic luminophores, terbium-doped lanthanum metaphosphates La1-xTbxP3O9 (x = 0.05, 0.1, 0.2, 0.3, 0.4) were synthesised by extraction-pyrolytic method at low temperature in comparison with known methods. The crystal structure and optical properties of the obtained samples were characterised by X-ray phase analysis, IR and luminescence spectroscopy, and the unit cell parameters were calculated. Сompounds having rhombic structure, pr. gr. C 222 1, were obtained in the temperature range of 500–900°C. All parameters of the unit cell decrease linearly with the introduction of terbium into lanthanum metaphosphate. La1-xTbxP3O9 compounds show intense luminescence in the region of 450–650 nm. The La0.8Tb0.2P3O9 sample obtained in one hour annealing at pyrolysis temperature of 900°C shows maximum luminescence intensity.

全文:

受限制的访问

作者简介

M. Belobeletskaya

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: rita@ich.dvo.ru
俄罗斯联邦, Vladivostok, 690022

N. Steblevskaya

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: rita@ich.dvo.ru
俄罗斯联邦, Vladivostok, 690022

M. Medkov

Institute of Chemistry of the Far Eastern Branch of the Russian Academy of Sciences

Email: rita@ich.dvo.ru
俄罗斯联邦, Vladivostok, 690022

参考

  1. Zhou C., Dong P., Ga P. et al. // Spectrochim. Acta, Part A. 2024. V. 313. P. 124102. https://doi.org/10.1016/j.saa.2024.124102
  2. Patel L., Mehta M., Sharma R. // IJCRT. 2023. V. 11. № 2. P. 444.
  3. Возняк-Левушкина В.С., Арапова А.А., Спасский Д.А. и др. // ФТТ. 2022. Т. 64. № 12. С. 1925. https://doi.org/10.21883/FTT.2022.12.53644.449
  4. Dongyan Y., Xingya W., Gongqin Y. et al. // Mater. Rev. 2020. V. 34. P. 41.
  5. Барановская В.Б., Карпов Ю.А., Петрова К.В. и др. // Изв. ВУЗов. Цветн. металлургия. 2020. № 6. С. 4. https://doi.org/10.17073/0021-3438-2020-6-4-23
  6. Седов В.А., Гляделова Я.Б., Асабина Е.А. и др. // Журн. неорган. химии. 2023. T. 68. № 3. С. 291. https://doi.org/10.31857/S0044457X22601602
  7. Singh V., Ravita Kaur S. et al. // Optik. 2021. V. 244. P. 167323. https://doi.org/10.1016/j.ijleo.2021.167323
  8. Fang M-H., Bao Z., Huang W-T. et al. // Chem. Rev. 2022. V. 122. № 13. P. 11474. https://doi.org/10.1021/acs.chemrev.1c00952
  9. Farooq M., Rafiq H., Shah A.I. et al. // ECS J. Solid State Sci. Technol. 2023. V. 12. № 12. P. 126002. https://doi.org/10.1149/2162-8777/ad1062
  10. Krutyak N., Spassky D., Deyneko D.V. et al. // Dalton Trans. 2022. V. 51. P. 11840.
  11. Zhang X., Chen P., Wang Z. et al. // Solid State Sci. 2016. V. 58. P. 80. https://doi.org/10.1016/j.solidstatesciences.2016.06.002
  12. Wang Y., Wang D. // J. Solid State Chem. 2007. V. 180. № 12. P. 3450. https://doi.org/10.1016/j.jssc.2007.10.008
  13. Kononets N.V., Seminko V.V., Maksimchuk P.O. et al. // Low Temp. Phys. 2017. V. 43. № 8. P. 1009. https://doi.org/10.1063/1.5001311
  14. Yuan J-L., Zhang H., Zhao J-T. et al. // Opt. Mater. 2008. V. 30. № 9. P. 1369. https://doi.org/10.1016/j.optmat.2007.07.004
  15. Wu C., Wang Y., Wang D. // Electrochem. Solid-State Lett. 2008. V. 11. № 2. Р. J9. https://doi.org/10.1149/1.2809168
  16. Briche S., Zambon D., Chadeyron G. et al. // J. Sol-Gel Sci. Technol. 2010. V. 55. P. 41. https://doi.org/10.1007/s10971-010-2211-z
  17. Onishi T., Hatada N., Kuramitsu A. et al. // J. Cryst. Growth. 2013. V. 380. № 1. P. 78. https://doi.org/10.1016/j.jcrysgro.2013.06.001
  18. Singh V., Yadav A., Rao A.S. et al. // Optik. 2020. V. 206. P. 164239. https://doi.org/10.1016/j.ijleo.2020.164239
  19. Hachani S., Moine B., El-akrmi A. et al. // J. Lumin. 2010. V. 130. P. 1774. https://doi.org/10.1016/j.jlumin.2010.04.009
  20. Yang J., Jia X., Zeng X. et al. // J. Mater. Sci. 2015. V. 50. P. 4405. https://doi.org/10.1007/s10853-015-8996-y
  21. Стеблевская Н.И., Белобелецкая М.В., Медков М.А. Люминофоры на основе оксидов редких и редкоземельных металлов: экстракционно-пиролитический синтез и свойства. Функциональные керамические и композитные материалы практического назначения: синтез, свойства, применение. Владивосток: Изд-во ВВГУ, 2022. 240 с. https://doi.org/10/12466/0677-0-2022
  22. Стеблевская Н.И., Белобелецкая М.В. // Хим. технология. 2023. Т. 24. № 1. С. 15.
  23. Стеблевская Н.И., Белобелецкая М.В. // Журн. неорган. химии. 2023. T. 68. № 7. С. 913. https://doi.org/10.31857/S0044457X22602280
  24. Matuszewski J., Kropiwnicka J., Znamierowska T. // J. Solid State Chem. 1988. V. 75. P. 285.
  25. Бугаенко Л.Т., Рябых С.М., Бугаенко А.Л. // Вестн. Моск. ун-та. Сер. 2. Химия. 2008. Т. 49. № 6. С. 363.
  26. Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A – Theory and Applications in Inorganic Chemistry. N.-Y.: John Wiley and Sons, 2009.
  27. Blasse G., Grabmaier B.C. Luminescent materials. Berlin: Springer-Verlag, 1994. 233 p.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Diffraction patterns of the compound LaP3O9 obtained at 400 (1), 500 (2), 900 (3) and 1100°C (4).

下载 (172KB)
3. Fig. 2. Diffraction patterns of samples of the composition La0.9Tb0.1P3O9 (1), La0.8Tb02P3O9 (2), La0.7Tb0.3P3O9 (3), La0.6Tb0.4P3O9 (4).

下载 (143KB)
4. Fig. 3. Luminescence excitation spectra of La1 – хTbхP3O9 samples at х = 0.05 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), obtained at 900°С (a), and La0.8Tb0.2P3O9 sample obtained at 700 (1), 800 (2) and 900°С (3); λem = 545 nm, 300 K (b).

下载 (105KB)
5. Fig. 4. Luminescence spectra of La1 – хTbхP3O9 at х = 0.05 (1), 0.1 (2), 0.2 (3), 0.3 (4), 0.4 (5), obtained at 900°С (a); dependence of the luminescence intensity of compounds on the annealing temperature of precursors (1) and the concentration of Tb3+ ions (2); λex = 241 nm, 300 K (b).

下载 (129KB)

版权所有 © Russian Academy of Sciences, 2025