Synthesis of zinc oxide nanoparticles in the processing of galvanic sludge
- Autores: Murashova N.M.1, Kuptsova M.Y.1, Tokarev P.O.1
- 
							Afiliações: 
							- Mendeleyev University of Chemical Technology of Russia
 
- Edição: Volume 69, Nº 7 (2024)
- Páginas: 1073-1083
- Seção: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.eco-vector.com/0044-457X/article/view/666481
- DOI: https://doi.org/10.31857/S0044457X24070167
- EDN: https://elibrary.ru/XNASUQ
- ID: 666481
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
For the first time, the possibility of synthesizing zinc oxide nanoparticles during the processing of galvanic sludge using microemulsion leaching and subsequent precipitation of nanoparticles in this microemulsion has been demonstrated. Using model systems with ZnO and Zn(OH)2, the leaching of zinc into reverse microemulsions is studied in the system sodium dodecyl sulfate – butanol-1 – kerosene – water, containing extractants di-(2-ethylhexyl)phosphoric acid, caproic acid or a mixture of tributyl phosphate and acetic acid. The best leaching results are observed for microemulsion with di-(2-ethylhexyl)phosphoric acid. Using the model system “zinc hydroxide contaminated with iron (III) hydroxide,” the possibility of selective extraction of zinc into a microemulsion is shown. A method for the synthesis of nanoparticles has been developed, which includes microemulsion leaching of zinc, separation of unreacted solid phase, precipitation of ZnO nanoparticles from the microemulsion with an aqueous NaOH solution, separation of the precipitate, washing and drying. Using a model system with ZnO, spherical nanoparticles with a diameter of 34 ± 9 nm (according to transmission electron microscopy) were synthesized by this method; X-ray diffraction analysis showed that ZnO was obtained.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
N. Murashova
Mendeleyev University of Chemical Technology of Russia
							Autor responsável pela correspondência
							Email: namur_home@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 125047						
M. Kuptsova
Mendeleyev University of Chemical Technology of Russia
														Email: namur_home@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 125047						
P. Tokarev
Mendeleyev University of Chemical Technology of Russia
														Email: namur_home@mail.ru
				                					                																			                												                	Rússia, 							Moscow, 125047						
Bibliografia
- Систер В.Г., Клушин В.Н., Родионов А.И. Переработка и обезвреживание осадков и шламов. М.: Дрофа, 2008. 248 с.
- Информационно-технический справочник по наилучшим доступным технологиям ИТС 36-2017 “Обработка поверхностей металлов и пластмасс с использованием электролитических и химических процессов”. М.: Бюро НДТ, 2017. 228 с.
- Jha M.K., Kumar V., Singh R.J. // Resour. Conserv. Recycl. 2001. V. 33. № 1. P. 1. https://doi.org/10.1016/S0921-3449(00)00095-1
- Krishnan S., Zulkapli N.S., Kamyab H. et al. // Environ. Technol. Innovation. 2021. V. 22. P. 101525. https://doi.org/10.1016/j.eti.2021.101525
- Lobato N.C.C., Villegas E.A., Mansur M.B. // Resour. Conserv. Recycl. 2015. V. 102. P. 49. https://doi.org/10.1016/j.resconrec.2015.05.025
- Brar K.K., Magdouli S., Othmani A. et al. // Environ. Res. 2022. V. 207. P. 112202. https://doi.org/10.1016/j.envres.2021.112202
- Hernández-Saravia L.P., Carmona E.R., Villacorta A. et al. // Green Chem. Lett. Rev. 2023. V. 16. № 1. P. 2260401. https://doi.org/10.1080/17518253.2023.2260401
- Deep A., Sharma A.L., Mohanta G.C. et al. // Waste Manage. 2016. V. 51. P. 190. https://doi.org/10.1016/j.wasman.2016.01.033
- Томина Е.В., Дмитренков А.И., Жужукин К.В. // Изв. вузов. Лесной журн. 2022. № 4. С. 173. https://doi.org/10.37482/0536-1036-2022-4-173-184
- Серцова А.А., Маракулин С.И., Юртов Е.В. // Рос. хим. журн. (Журн. Рос. хим. об-ва им. Д.И. Менделеева). 2015. Т. 59. № 3. С. 78.
- Kumar M., Bansal M., Garg R. // Mater. Today: Proc. 2021. V. 43. № 2. P. 892. https://doi.org/10.1016/j.matpr.2020.07.215
- Бакина О.В., Чжоу В.Р., Иванова Л.Ю. и др. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 401. https://doi.org/10.31857/S0044457X22601249
- Jiang Z., Liu B., Yu L. et al. // J. Alloys Compd. 2023. V. 956. P. 170316. https://doi.org/10.1016/j.jallcom.2023.170316
- Rakshir A.K., Naskar B., Moulik S.P. // Current Science. 2019. V. 116. № 6. P. 898. https://doi.org/10.18520/cs/v116/i6/898-912
- Jalali-Jivan M., Garavand F., Jafari S.M. // Adv. Colloid Interface Sci. 2020. V. 283. P. 102227. https://doi.org/10.1016/j.cis.2020.102227
- Мурашова Н.М., Купцова М.Ю. // Хим. пром. сегодня. 2019. № 6. С. 64.
- Товстун С.А., Разумов В.Ф. // Успехи химии. 2011. Т. 80. № 10. С. 966. https://doi.org/10.1070/RC2011v080n10ABEH004154
- Hingorani S., Pillai V., Kumar P. et al. // Mater. Res. Bull. 1993. V. 28. № 12. P. 1303. https://doi.org/10.1016/0025-5408(93)90178-G
- Юртов Е.В., Мурашова Н.М. // Хим. технология. 2010. Т. 11. № 8. С. 479.
- Murashova N.M., Levchishin S.Yu., Yurtov E.V. // Hydrometallurgy. 2018. V. 175. P. 278. https://doi.org/10.1016/j.hydromet.2017.12.012
- Плетнев И.В., Смирнова С.В., Шаров А.В. и др. // Успехи химии. 2021. Т. 90. № 9. С. 1109. https://doi.org/10.1070/RCR5007?locatt=label:RUSSIAN
- Мурашова Н.М., Левчишин С.Ю., Юртов Е.В. // Хим. технология. 2011. Т. 12. № 7. С. 405.
- Полякова А.С., Мурашова Н.М., Юртов Е.В. // Журн. прикл. химии. 2020. Т. 93. № 2. С. 249. https://doi.org/10.31857/S0044461820020139
- Solvent Extraction Principles and Practice / Eds. Rydberg J., Cox M., Musikas C., Choppin G.R. N.Y., Basel. 2004. 723 p.
- Silva J.E., Paiva A.P., Soares D. et al. // J. Hazard. Mater. 2005. V. 120. № 1–3. P. 113. https://doi.org/10.1016/j.jhazmat.2004.12.008
- Pereira D.D., Rocha S.D.F., Mansur M.B. // Sep. Purif. Technol. 2007. V. 53. № 1. P. 89. https://doi.org/10.1016/j.seppur.2006.06.013
- Vahidi E., Rashchi F., Moradkhani D. // Miner. Eng. 2009. V. 22. № 2. P. 204. https://doi.org/10.1016/j.mineng.2008.05.002
- Федорова М.И., Левина А.В., Заходяева Ю.А. и др. // Журн. неорган. химии. 2022. Т. 67. № 7. С. 1000. https://doi.org/10.31857/S0044457X22070091
- Чекмарев А.М., Синегрибова О.А., Кушнерев А.В и др. // Коллоид. журн. 1997. Т. 59. № 3. С. 399.
- Мурашова Н.М., Левчишин С.Ю., Юртов Е.В. // Хим. технология. 2012. V. 13. № 1. С. 19.
- Bai S., Chen L., Chen S. et al. // Sens. Actuators B. 2014. V. 190. P. 760. https://doi.org/10.1016/j.snb.2013.09.032
- Li X., He G., Xiao G. et al. // J. Colloid Interface Sci. 2009. V. 333. № 2. P. 465. https://doi.org/10.1016/j.jcis.2009.02.029
- Sarkar D., Tikku S., Thapar V. et al. // Colloids Surf. A. 2011. V. 381. № 1–3. P. 123. https://doi.org/10.1016/j.colsurfa.2011.03.041
- Liu Y., Lv H., Li S. et al. // Mater. Charact. 2011. V. 62. № 5. P. 509. https://doi.org/10.1016/j.matchar.2011.03.010
- Yu X., Xu S., Han Y. et al. // Cryst. Res. Technol. 2012. V. 47. № 7. P. 754. https://doi.org/10.1002/crat.201100635
- Pineda-Reyes A.M., Olvera M. de la L. // Mater. Chem. Phys. 2018. V. 203. P. 141. https://doi.org/10.1016/j.matchemphys.2017.09.054
- Мурашова Н.М., Полякова А.С., Купцова М.Ю., Токарев П.О. Пат. России № 2799182 // Бюл. изобр. 2023. № 19. С. 361.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







