Synthesis and structure of nanocrystalline copper sulfides with djurleite and covellite structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Method of chemical deposition from water solutions of copper nitrate and sodium sulphide, and also from water solutions of copper nitrate with use thiocarbonic acid diamide as sufidizer in the presence of Trilon stabilizer are synthesized nanocrystalline powders of copper sulfides with structures of covellite and djurleite. It is established, that as a result of sulfidization of copper nitrate by sodium sulphide forms powders of copper sulfides with the particle size of 3–6 nanometers having structure of hexagonal covellite and also monoclinic djurleite Cu2-xS with small nonstoichiometry of copper sublattice. Deposition from poorly alkaline water solutions of copper nitrate, thiocarbonic acid diamide and Trilon with heating to temperature ~90–100°C would allow to receive nanocrystalline powders CuS with the particle size of 45–55 nanometers having structure of hexagonal covellite.

Full Text

Restricted Access

About the authors

S. I. Sadovnikov

Institute of Solid State Chemistry, Ural Branch of the RAS

Author for correspondence.
Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990

A. I. Gusev

Institute of Solid State Chemistry, Ural Branch of the RAS

Email: sadovnikov@ihim.uran.ru
Russian Federation, Ekaterinburg, 620990

References

  1. Lukashev P., Lambrecht W.R.L., Kotani T. et al. // Phys. Rev. B. 2007. V. 76. № 19. P. 195202. https://doi.org/10.1103/PhysRevB.76.195202
  2. Садовников С.И., Сергеева С.В., Гусев А.И. // Журн. неорган. химии. 2024. Т. 69. № 5. С. 792. https://doi.org/10.31857/S0044457X24050192
  3. Зарудских М.А., Ильина Е.Г., Манкевич А.С. и др. // Журн. неорган. химии. 2024. Т. 69. № 2. C. 166. https://doi.org/10.31857/S0044457X24020038
  4. Shaikh G.Y., Nilegave D.S., Girawale S.S. et al. // ACS Omega. 2022. V. 7. № 34. P. 30233. https://doi.org/10.1021/acsomega.2c03352
  5. Evans H.T.Jr. // Nature Phys. Sci. 1971. V. 232. P. 69.
  6. Evans H.T.Jr. // Z. Kristallogr. 1979. V. 150. P. 299.
  7. Barth T. // Z. Mineral. Geol. A. 1926. P. 284.
  8. Evans H.T.Jr., Konnert J.A. // Am. Mineral. 1976. V. 61. P. 996.
  9. Fjellvag H., Gronvold F., Stolen S. et al. // Z. Kristallogr. 1988. V. 184. P. 111.
  10. Jiang X., Xie Yi., Lu J. et al. // J. Mater. Chem. 2010. V. 10. № 9. P. 2193.
  11. Djurle S. // Acta Chem. Scand. 1958. V. 12. № 7. P. 1415. https://doi.org/10.3891/acta.chem.scand.12-1415
  12. Roseboom E.H. // Am. Mineral. 1962. V. 47. P. 1181.
  13. Joint Committee on Powder Diffraction Standards (JCPDS card № C83 1463).
  14. Evans H.T. Jr. // Science. 1979. V. 203. № 4378. P. 356.
  15. Gronvold F., Westrum E.F. Jr. // Am. Mineral. 1980. V. 65. № 5–6. P. 574.
  16. Morimoto N., Kullerud G. // Am. Mineral. 1963. V. 48. № 1–2. P. 110.
  17. Mumme W.G., Sparrow G.J., Walker G.S. // Mineralogical Magazine. 1988. V. 52. № 6. P. 323.
  18. Мурашева К.С., Сайкова С.В., Воробьев С.А. и др. // Журн. структур. химии. 2017. Т. 58. № 7. С. 1421. https://doi.org/10.26902/JSC20170715
  19. Ульянова У.С., Кожевникова Н.С., Бакланова И.В. и др. // В кн.: Тезисы докл. XXVIII Рос. мол. научн. конф. “Проблемы теор. и эксп. химии”. Екатеринбург, 23–27 апр. 2018. С. 334.
  20. Behboudnia M., Khanbabaee B. // J. Cryst. Growth. 2007. V. 304. № 1. P. 158. https://doi.org/10.1016/j.jcrysgro.2007.02.016
  21. Bera P., Seok S.I. // Solid State Sci. 2012. V. 14. № 8. P. 1126. https://doi.org/10.1016/j.solidstatesciences.2012.05.027
  22. Xie Y., Riedinger A., Prato M. et al. // J. Am. Chem. Soc. 2013. V. 135. № 46. P. 17630. https://doi.org/10.1021/ja409754v
  23. Ajibade P.A., Botha N.L. // Res. Phys. 2016. V. 6. P. 581. http://dx.doi.org/10.1016/j.rinp.2016.08.001
  24. Sleman U.M., Naji I.S. S // Iraqi J. Phys. 2018. V. 16. № 38. P. 124. https://doi.org/10.20723/ijp.16.38.124-131
  25. Kuterbekov K.A., Balapanov M.Kh., Kubenova M.M. et al. // Lett. Mater. 2022. V. 12. № 3. P. 191. https://doi.org/10.22226/2410-3535-2022-3-191-196
  26. Xie Y., Carbone L., Nobile C. et al. // ACS Nano. 2013. V. 7. P. 7352. https://doi.org/10.1021/nn403035s
  27. Jaque D., Maestro L.M., del Rosal B. et al. // Nanoscale. 2014. V.6. № 16. P. 9494. https://doi.org/10.1039/C4NR00708E
  28. Shaw W.H.R., Walker D.G. // J. Am. Chem. Soc. 1956. V. 78. № 22. P. 5769. https://pubs.acs.org/doi/10.1021/ja01603a014
  29. Марков В.Ф., Маскаева Л.Н., Иванов П.Н. Гидрохимическое осаждение пленок сульфидов металлов: моделирование и эксперимент. Екатеринбург: Изд-во УрО РАН, 2006. С. 41.
  30. X’Pert HighScore Plus. Version 2.2e (2.2.5). 2009 PANalytical B. V. Almedo, the Netherlands.
  31. Match. Version 1.10b. Phase Identification from Powder Diffraction 2003–2010 Crystal Impact.
  32. Takeuchi Y., Kudoh Y., Sato G. // Z. Kristallogr. 1985. V. 173. № 1–2. P. 1198. https://doi.org/10.1524/zkri.1985.173.1-2.119
  33. Joint Committee on Powder Diffraction Standards (JCPDS card № 75-2233).
  34. Ohmasa M., Suzuki M., Takeuchi Y. // Mineral. J. 1977. V. 8. № 6. P. 311.
  35. Gusev A.I., Rempel A.A. Nanocrystalline Materials. Cambridge: Cambridge Intern. Sci. Publishing, 2004. 351 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. X-ray diffraction patterns of nanocrystalline copper sulfides samples 1–3. Synthesized samples 1 and 2 are two-phase and contain the main hexagonal (sp. gr. P63/mmc) phase with a covellite structure and nanoparticle sizes of 3–6 nm, as well as a monoclinic (sp. gr. P21/n, No. 14) impurity phase of jarleyite with narrow reflections and particle sizes of ~70 nm. Sample 3 contains only covellite. The positions of jarleyite diffraction reflections according to [6, 13] are shown by vertical dashes at the bottom of the figure.

Download (17KB)
3. Fig. 2. X-ray diffraction pattern of nanocrystalline copper sulfide CuS (sample 4) with a hexagonal (sp. gr. P63/mmc) covellite structure: experimental points are shown with an × sign, the calculated intensity is shown by a solid line. The difference between the experimental and calculated intensities (Iexp — Icalc) is shown at the bottom of the figure; vertical bars correspond to the positions of the diffraction reflections. RI is the Rietveld convergence factor.

Download (24KB)
4. Fig. 3. TEM image of 40–50 nm particles of nanocrystalline hexagonal covellite CuS powder deposited from reaction mixture 4.

Download (17KB)
5. Fig. 4. X-ray diffraction pattern of nanocrystalline copper sulfide CuS (sample 5) with a hexagonal (sp. gr. P63/mmc) covellite structure.

Download (24KB)
6. Fig. 5. TEM image of 45–60 nm particles of nanocrystalline hexagonal covellite CuS powder deposited from reaction mixture 5.

Download (14KB)
7. Fig. 6. Estimation of the average size of coherent scattering regions 〈D〉 based on the dependence of the reduced broadening β*(2θ ) = [β(2θ )cosθ ]/λ of diffraction reflections on the scattering vector s = (2sinθ )/λ for nanocrystalline copper sulfide CuS powders 4 and 5. The inset shows the position of the dependences and the reduced broadening at the origin of coordinates on an enlarged scale.

Download (19KB)

Copyright (c) 2025 Russian Academy of Sciences