Влияние на газочувствительные свойства нанокомпозитов Ti3C2Tx/TiOx состава травящей системы MF–HCl (M = Li+, Na+, NH4+)
- Авторы: Симоненко Е.П.1,2, Мокрушин А.С.1, Нагорнов И.А.1, Сапронова В.М.1,2, Горбань Ю.М.1,2, Горобцов Ф.Ю.1, Симоненко Т.Л.1, Симоненко Н.П.1, Кузнецов Н.Т.1
- 
							Учреждения: 
							- Институт общей и неорганической химии им. Н.С. Курнакова РАН
- Российский химико-технологический университет им. Д.И. Менделеева
 
- Выпуск: Том 69, № 4 (2024)
- Страницы: 607-623
- Раздел: НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ И НАНОМАТЕРИАЛЫ
- URL: https://journals.eco-vector.com/0044-457X/article/view/666583
- DOI: https://doi.org/10.31857/S0044457X24040164
- EDN: https://elibrary.ru/ZXIYZG
- ID: 666583
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
Изучено влияние природы травящих систем MF–HCl (M = Li+, Na+, NH4+) на протекание процесса синтеза максенов Ti3C2Tx на основе МАХ-фазы Ti3AlC2, микроструктуру, фазовую чистоту, межслоевое расстояние, состав функциональных поверхностных групп, термическое поведение и работу выхода получаемых продуктов. Изучены сенсорные свойства при комнатной температуре рецепторных слоев Ti3C2Tx, нанесенных методом микроплоттерной печати, по отношению к широкому кругу газообразных аналитов (H2, CO, NH3, NO2, O2, бензол, ацетон, метан и этанол). Выявлена повышенная чувствительность к аммиаку максенов, полученных в результате воздействия солянокислых растворов фторидов натрия и аммония, и к монооксиду углерода образца, синтезированного с помощью системы LiF–HCl. Отмечены высокие отклики (~20–30% на 100 ppm NO2) для всех трех рецепторных материалов, однако процессы восстановления датчиков значительно затруднены. Для улучшения сенсорных характеристик чувствительные слои Ti3C2Tx подвержены относительно низкотемпературной термической обработке в воздушной атмосфере для формирования нанокомпозитов Ti3C2Tx/TiOx. Выявлено, что для частично окисленных максенов наблюдается высокий селективный отклик на кислород при очень низких рабочих температурах (125–175°С), что особенно характерно для материала, изготовленного с применением системы HCl–NaF.
Ключевые слова
Полный текст
 
												
	                        Об авторах
Е. П. Симоненко
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Российский химико-технологический университет им. Д.И. Менделеева
							Автор, ответственный за переписку.
							Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991; Миусская пл., 9, Москва, 125047						
А. С. Мокрушин
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991						
И. А. Нагорнов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991						
В. М. Сапронова
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Российский химико-технологический университет им. Д.И. Менделеева
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991; Миусская пл., 9, Москва, 125047						
Ю. М. Горбань
Институт общей и неорганической химии им. Н.С. Курнакова РАН; Российский химико-технологический университет им. Д.И. Менделеева
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991; Миусская пл., 9, Москва, 125047						
Ф. Ю. Горобцов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991						
Т. Л. Симоненко
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991						
Н. П. Симоненко
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991						
Н. Т. Кузнецов
Институт общей и неорганической химии им. Н.С. Курнакова РАН
														Email: ep_simonenko@mail.ru
				                					                																			                												                	Россия, 							Ленинский пр-т, 31, Москва, 119991						
Список литературы
- Zhang J., Qin Z., Zeng D. et al. // Phys. Chem. Chem. Phys. 2017. V. 19. № 9. P. 6313. https://doi.org/10.1039/C6CP07799D
- Wang H., Ma J., Zhang J. et al. // J. Phys.: Condens. Matter. 2021. V. 33. № 30. P. 303001. https://doi.org/10.1088/1361-648X/abf477
- Peterson P., Aujla A., Grant K. et al. // Sensors. 2017. V. 17. № 7. P. 1653. https://doi.org/10.3390/s17071653
- De Vito S., Massera E., Piga M. et al. // Sens. Actuators, B: Chem. 2008. V. 129. № 2. P. 750. https://doi.org/10.1016/j.snb.2007.09.060
- Mahajan S., Jagtap S. // J. Electron. Mater. 2021. V. 50. № 5. P. 2531. https://doi.org/10.1007/s11664-021-08761-7
- Mishra A., Basu S., Shetti N.P. et al. // J. Mater. Sci. - Mater. Electron. 2019. V. 30. № 9. P. 8160. https://doi.org/10.1007/s10854-019-01232-0
- Reddy B.K.S., Borse P.H. // J. Electrochem. Soc. 2021. V. 168. № 5. P. 057521. https://doi.org/10.1149/1945-7111/abf4ea
- Chai H., Zheng Z., Liu K. et al. // IEEE Sens. J. 2022. V. 22. № 6. P. 5470. https://doi.org/10.1109/JSEN.2022.3148264
- Nadargi D.Y., Umar A., Nadargi J.D. et al. // J. Mater. Sci. 2023. V. 58. № 2. P. 559. https://doi.org/10.1007/s10853-022-08072-0
- Wilson A. // Metabolites. 2015. V. 5. № 1. P. 140. https://doi.org/10.3390/metabo5010140
- van der Sar I.G., Wijbenga N., Nakshbandi G. et al. // Respir. Res. 2021. V. 22. № 1. P. 246. https://doi.org/10.1186/s12931-021-01835-4
- Licht J.-C., Grasemann H. // Int. J. Mol. Sci. 2020. V. 21. № 24. P. 9416. https://doi.org/10.3390/ijms21249416
- Liu C., Wang Q., Wang C. et al. // Trends Environ. Anal. Chem. 2023. V. 40. P. E00215. https://doi.org/10.1016/j.teac.2023.e00215
- Deshmukh K., Kovářík T., Khadheer Pasha S.K. // Coord. Chem. Rev. 2020. V. 424. P. 213514. https://doi.org/10.1016/j.ccr.2020.213514
- Simonenko E.P., Simonenko N.P., Mokrushin A.S. et al. // Nanomaterials. 2023. V. 13. № 5. P. 850. https://doi.org/10.3390/nano13050850
- Devaraj M., Rajendran S., Hoang T.K.A. et al. // Chemosphere. 2022. V. 302. P. 134933. https://doi.org/10.1016/j.chemosphere.2022.134933
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 11. P. 1850. https://doi.org/10.1134/S0036023622601222
- Choi S.-J., Kim I.-D. // Electron. Mater. Lett. 2018. V. 14. № 3. P. 221. https://doi.org/10.1007/s13391-018-0044-z
- Li Q., Li Y., Zeng W. // Chemosensors. 2021. V. 9. № 8. P. 225. https://doi.org/10.3390/chemosensors9080225
- Riazi H., Taghizadeh G., Soroush M. // ACS Omega. 2021. V. 6. № 17. P. 11103. https://doi.org/10.1021/acsomega.0c05828
- Ho D.H., Choi Y.Y., Jo S.B. et al. // Adv. Mater. 2021. V. 33. № 47. P. 2005846. https://doi.org/10.1002/adma.202005846
- Sivasankarapillai V.S., Sharma T.S.K., Hwa K.-Y. et al. // ES Energy Environ. 2022. https://doi.org/10.30919/esee8c618
- Alwarappan S., Nesakumar N., Sun D. et al. // Biosens. Bioelectron. 2022. V. 205. P. 113943. https://doi.org/10.1016/j.bios.2021.113943
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Micromachines. 2023. V. 14. № 4. P. 725. https://doi.org/10.3390/mi14040725
- Simonenko N.P., Glukhova O.E., Plugin I.A. et al. // Chemosensors. 2022. V. 11. № 1. P. 7. https://doi.org/10.3390/chemosensors11010007
- Khakbaz P., Moshayedi M., Hajian S. et al. // J. Phys. Chem. C. 2019. V. 123. № 49. P. 29794. https://doi.org/10.1021/acs.jpcc.9b09823
- Wu M., He M., Hu Q. et al. // ACS Sensors. 2019. V. 4. № 10. P. 2763. https://doi.org/10.1021/acssensors.9b01308
- Lee E., VahidMohammadi A., Prorok B.C. et al. // ACS Appl. Mater. Interfaces. 2017. V. 9. № 42. P. 37184. https://doi.org/10.1021/acsami.7b11055
- Yang Z., Liu A., Wang C. et al. // ACS Sensors 2019. V. 4. № 5. P. 1261. https://doi.org/10.1021/acssensors.9b00127
- Alhabeb M., Maleski K., Anasori B. et al. // Chem. Mater. 2017. V. 29. № 18. P. 7633. https://doi.org/10.1021/acs.chemmater.7b02847
- Lipatov A., Alhabeb M., Lukatskaya M.R. et al. // Adv. Electron. Mater. 2016. V. 2. № 12. https://doi.org/10.1002/aelm.201600255
- Shayesteh Zeraati A., Mirkhani S.A., Sun P. et al. // Nanoscale. 2021. V. 13. № 6. P. 3572. https://doi.org/10.1039/D0NR06671K
- Yang M., Huang M., Li Y. et al. // Sens. Actuators, B: Chem. 2022. V. 364. P. 131867. https://doi.org/10.1016/j.snb.2022.131867
- Sinha A., Ma K., Zhao H. // J. Colloid Interface Sci. 2021. V. 590. P. 365. https://doi.org/10.1016/j.jcis.2021.01.063
- Sun Q., Wang J., Wang X. et al. // Nanoscale. 2020. V. 12. № 32. P. 16987. https://doi.org/10.1039/C9NR08350B
- Kvashina T.S., Uvarov N.F., Korchagin M.A. et al. // Mater. Today Proc. 2020. V. 31. P. 592. https://doi.org/10.1016/j.matpr.2020.07.107
- Wang L., Zhang H., Wang B. et al. // Electron. Mater. Lett. 2016. V. 12. № 5. P. 702. https://doi.org/10.1007/s13391-016-6088-z
- Liu F., Zhou A., Chen J. et al. // Appl. Surf. Sci. 2017. V. 416. P. 781. https://doi.org/10.1016/j.apsusc.2017.04.239
- Wang L., Liu D., Lian W. et al. // J. Mater. Res. Technol. 2020. V. 9. № 1. P. 984. https://doi.org/10.1016/j.jmrt.2019.11.038
- Mokrushin A.S., Nagornov I.A., Gorobtsov P.Y. et al. // Chemosensors. 2022. V. 11. № 1. P. 13. https://doi.org/10.3390/chemosensors11010013
- Mokrushin A.S., Nagornov I.A., Averin A.A. et al. // Chemosensors. 2023. V. 11. № 2. P. 142. https://doi.org/10.3390/chemosensors11020142
- Simonenko E.P., Nagornov I.A., Mokrushin A.S. et al. // Materials (Basel). 2023. V. 16. № 13. P. 4506. https://doi.org/10.3390/ma16134506
- Choi J., Kim Y., Cho S. et al. // Adv. Funct. Mater. 2020. V. 30. № 40. P. 2003998. https://doi.org/10.1002/adfm.202003998
- Pazniak H., Plugin I.A., Loes M.J. et al. // ACS Appl. Nano Mater. 2020. V. 3. № 4. P. 3195. https://doi.org/10.1021/acsanm.9b02223
- Kuang D., Wang L., Guo X. et al. // J. Hazard. Mater. 2021. V. 416. P. 126171. https://doi.org/10.1016/j.jhazmat.2021.126171
- Liu S., Wang M., Liu G. et al. // Appl. Surf. Sci. 2021. V. 567. P. 150747. https://doi.org/10.1016/j.apsusc.2021.150747
- Zhang D., Yu S., Wang X. et al. // J. Hazard. Mater. 2022. V. 423. P. 127160. https://doi.org/10.1016/j.jhazmat.2021.127160
- Zhou Y., Wang Y., Wang Y. et al. // ACS Appl. Mater. Interfaces. 2021. V. 13. № 47. P. 56485. https://doi.org/10.1021/acsami.1c17429
- Badie S., Dash A., Sohn Y.J. et al. // J. Am. Ceram. Soc. 2021. V. 104. № 4. P. 1669. https://doi.org/10.1111/jace.17582
- Roy C., Banerjee P., Bhattacharyya S. // J. Eur. Ceram. Soc. 2020. V. 40. № 3. P. 923. https://doi.org/10.1016/j.jeurceramsoc.2019.10.020
- Luo W., Liu Y., Wang C. et al. // J. Mater. Chem. C. 2021. V. 9. № 24. P. 7697. https://doi.org/10.1039/D1TC01338F
- Liu A., Yang Q., Ren X. et al. // Ceram. Int. 2020. V. 46. № 5. P. 6934. https://doi.org/10.1016/j.ceramint.2019.11.008
- Simonenko E.P., Simonenko N.P., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. P. 705. https://doi.org/10.1134/S0036023622050187
- Simonenko N.P., Fisenko N.A., Fedorov F.S. et al. // Sensors (Switzerland). 2022. V. 22. № 3247. P. 1. https://doi.org/10.3390/s22093473
- Mokrushin A.S., Gorban Y.M., Averin A.A. et al. // Biosensors. 2023. V. 13. № 4. P. 445. https://doi.org/10.3390/bios13040445
- Mokrushin A.S., Gorban Y.M., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 12. P. 2099. https://doi.org/10.1134/S0036023622601520
- Nagornov I.A., Mokrushin A.S., Simonenko E.P. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 4. P. 539. https://doi.org/10.1134/S0036023622040143
- Lane N.J., Vogel S.C., Caspi E.N. et al. // J. Appl. Phys. 2013. V. 113. № 18. https://doi.org/10.1063/1.4803700
- Aigner K., Lengauer W., Rafaja D. et al. // J. Alloys Compd. 1994. V. 215. № 1–2. P. 121. https://doi.org/10.1016/0925-8388(94)90828-1
- Liu F., Zhou J., Wang S. et al. // J. Electrochem. Soc. 2017. V. 164. № 4. P. A709. https://doi.org/10.1149/2.0641704jes
- Qi Q., Zhang W.Z., Shi L.Q. et al. // Thin Solid Films. 2012. V. 520. № 23. P. 6882. h ttps://doi.org/10.1016/j.tsf.2012.07.040
- Lioi D.B., Neher G., Heckler J.E. et al. // ACS Appl. Nano Mater. 2019. V. 2. № 10. P. 6087. https://doi.org/10.1021/acsanm.9b01194
- Peng M., Wu Z., Wei W. et al. // Adv. Mater. Interfaces. 2022. V. 9. № 18. Р. 2102418. https://doi.org/10.1002/admi.202102418
- Hildenbrand V.D., Fuess H., Pfaff G. et al. // Z. Phys. Chem. 1996. V. 194. № 2. P. 139. https://doi.org/10.1524/zpch.1996.194.Part_2.139
- Hart J.L., Hantanasirisakul K., Lang A.C. et al. // Nat. Commun. 2019. V. 10. № 1. P. 522. https://doi.org/10.1038/s41467-018-08169-8
- Jing H., Lyu B., Tang Y. et al. // Small Sci. 2022. V. 2. № 11. https://doi.org/10.1002/smsc.202200057
- Hou C., Yu H., Huang C. // J. Mater. Chem. C. 2019. V. 7. № 37. P. 11549. https://doi.org/10.1039/C9TC03415C
- Ma R., Fukuda K., Sasaki T. et al. // J. Phys. Chem. B. 2005. V. 109. № 13. P. 6210. https://doi.org/10.1021/jp044282r
- Ma H.L., Yang J.Y., Dai Y. et al. // Appl. Surf. Sci. 2007. V. 253. № 18. P. 7497. https://doi.org/10.1016/j.apsusc.2007.03.047
- Mokrushin A.S., Simonenko E.P., Simonenko N.P. et al. // Appl. Surf. Sci. 2019. V. 463. P. 197. https://doi.org/10.1016/j.apsusc.2018.08.208
- Simonenko E.P., Mokrushin A.S., Simonenko N.P. et al. // Thin Solid Films. 2019. V. 670. P. 46. https://doi.org/10.1016/j.tsf.2018.12.004
- Mokrushin A.S., Simonenko T.L., Simonenko N.P. et al. // J. Alloys Compd. 2021. V. 868. P. 159090. https://doi.org/10.1016/j.jallcom.2021.159090
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 











