The electronic structure of the LrO8 cluster

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Relativistic discrete variation calculations of the electronic structure and the X-ray photoelectron spectrum of the valence electrons of the LrO8 were done. This cluster reflects the lattice fragment of lawrencium dioxides. A MO scheme of the valence molecular orbitals in the binding energy range 0 to ~50 eV was built. The Lr6d, 5f and O2p atomic orbitals were found to participate in the outer valence molecular orbitals (OVMO) formation, the Lr6p3/2 and O2s — АО atomic orbitals were found to participate in the inner valence molecular orbitals (IVMO) formation. The MO scheme allows understanding the chemical bond nature and the valence XPS spectrum in the LrO8 cluster. The relative contribution of the OVMO and IVMO electrons to the chemical bond covalence component was evaluated. A comparison with the valence XPS spectra of AnO2 of other actinides was done.

全文:

受限制的访问

作者简介

Yu. Teterin

M.V. Lomonosov Moscow State University; NRC “Kurchatov Institute”

Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 119991; Moscow, 123182

M. Ryzhkov

Institute of Solid State Chemistry of Ural Dept. of RAS

Email: antonxray@yandex.ru
俄罗斯联邦, Ekaterinburg, 620041

A. Putkov

NRC “Kurchatov Institute”

Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 123182

K. Maslakov

M.V. Lomonosov Moscow State University

Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 119991

A. Teterin

NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 123182

K. Ivanov

NRC “Kurchatov Institute”

Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 123182

S. Kalmykov

M.V. Lomonosov Moscow State University

Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 119991

V. Petrov

M.V. Lomonosov Moscow State University

Email: antonxray@yandex.ru
俄罗斯联邦, Moscow, 119991

参考

  1. Rai B.K., Bretana A., Morrison G. et al. // Rep. Prog. Phys. 2024. V. 87. № 6. P. 066501. https://doi.org/10.1088/1361-6633/ad38cb
  2. Pereiro F.A., Galley S.S., Jackson J.A. et al. // Inorg. Chem. 2024. V. 63. P. 9687. https://doi.org/10.1021/acs.inorgchem.3c03828
  3. Legg F., Harding L.M., Lewis J.C. et al. // Thin Solid Films. 2024. V. 790. P. 140194. http://dx.doi.org/10.2139/ssrn.4573818
  4. Serezhkin V.N., Serezhkina L.B. // Radiochemistry. 2022. V. 64. № 5. P. 603. https://doi.org/10.1134/S1066362222050034
  5. Neidig M.L., Clark D.L., Martin R.L. // Coord. Chem. Rev. 2013. V. 257. P. 394. https://doi.org/10.1016/j.ccr.2012.04.029
  6. Katz J.J., Seaborg G.T., Morss L.R. The chemistry of the actinide elements. London-New York: Chapman and Hall, 1986.
  7. Sato T.K., Asai M., Borschevsky A. et al. // Nature. 2015. V. 520. P. 209. https://doi.org/10.1038/nature14342
  8. Sato T.K., Sato N., Asai M. et al. // Rev. Sci. Instrum. 2013. V. 84. P. 023304. https://doi.org/10.1063/1.4789772
  9. Bemis Jr. C.E., Dittner P.F., Silva R.J. et al. // Phys. Rev. C. 1977. V. 16. P. 1146. https://doi.org/10.1103/PhysRevC.16.1146
  10. Huang K.N., Aojogi M., Chen M.N. et al. // At. Data Nucl. Data Tables. 1976. V. 18. P. 243. https://doi.org/10.1016/0092-640X(76)90027-9
  11. Dzuba V.A., Safronova M.S., Safronova U.I. // Phys. Rev. A. 2014. V. 90. P. 012504. https://doi.org/10.1103/PhysRevA.90.012504
  12. Borschevsky A., Eliav E., Vilkas M.J. et al. // Eur. Phys. J. D. 2007. V. 45. P. 115. https://doi.org/10.1140/epjd/e2007-00130-9
  13. Pershina V. // Comptes Rendus Chimie. 2020. V. 23. № 3. P. 255. https://doi.org/10.5802/crchim.25
  14. Sevier K.D. // At. Data Nucl. Data Tables. 1979. V. 24. P. 323. https://doi.org/10.1016/0092-640X(79)90012-3
  15. Тетерин Ю.А., Путков А.Е., Тетерин А.Ю. и др. // Неорган. материалы. 2024. Т. 60. № 7. С. 1.
  16. Rosen A., Ellis D.E. // J. Chem. Phys. 1975. V. 62. P. 3039. https://doi.org/10.1063/1.430892
  17. Ellis D.E., Goodman G.L. // Int. J. Quant. Chem. 1984. V. 25. P. 185. https://doi.org/10.1002/qua.560250115
  18. Gunnarsson O., Lundqvist B.I. // Phys. Rev. B. 1976. V. 13. P. 4274. https://doi.org/10.1103/PhysRevB.13.4274
  19. Pyykko P., Toivonen H. // Acta Acad. Aboensis, Ser. B. 1983. P. 43.
  20. Varshalovish D.A., Moskalev A.N., Khersonskii V.K. Quantum Theory of Angular Momentum. Singapore: World Scientific, 1988.
  21. Teterin Yu.A., Teterin A.Yu. // Russ. Chem. Rev. 2004. V. 73. P. 541. https://doi.org/
  22. Teterin Yu.A., Maslakov K.I., Teterin A.Yu. et al. // Phys. Rev. B. 2013. V. 87. P. 245108. https://doi.org/10.1103/PhysRevB.87.245108
  23. Teterin Yu.A., Teterin A.Yu., Ivanov K.E. et al. // Phys. Rev. B. 2014. V. 89. P. 035102. https://doi.org/10.1103/PhysRevB.89.035102
  24. Kelly P.J., Brooks M.S., Allen R. // J. Phys. Colloques. 1979. V. 40. № С4. P. 184. https://doi.org/10.1051/jphyscol:1979458
  25. Gubanov V.A., Rosen A., Ellis D.E. // J. Phys. Chem. Solids. 1979. V. 40. P. 17. https://doi.org/10.1016/0022-3697(79)90090-8
  26. Yarzhemsky V.G., Teterin A.Yu., Teterin Yu.A. et al. // Nucl. Techn. & Rad. Prot. 2012. V. 27. P. 103. https://doi.org/10.2298/NTRP1202103Y
  27. Mulliken R.S. // Annu. Rev. Phys. Chem. 1978. V. 29. P. 1. https://doi.org/10.1146/annurev.pc.29.100178.000245

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Histogram of the theoretical XPS spectrum (XRD) of valence electrons of the LrO8 cluster: the contribution of Lr5f electrons to the intensity is marked in black, and the contribution of Lr6p electrons to the intensity is marked with dashes.

下载 (19KB)
3. Fig. 2. MO scheme of the LrO8 cluster, constructed taking into account theoretical data. The chemical shift of the levels during the formation of a cluster from individual atoms is not shown. Arrows indicate some differences in the energy levels. The energy scale is not maintained.

下载 (43KB)

版权所有 © Russian Academy of Sciences, 2025