Structure and Properties of Germanium [n]-Prismanes Ge2nH2n: A Quantum Chemical Study

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Using the B3LYP/6-311+G(df,p) method, the stability limits of germanium prismanes Ge2nH2n were studied and it was shown that the prismane configurations are stable up to n = 15, while with a further increase in n, a distortion of the prismatic structure is observed. The greatest stability is demonstrated by 5-germaprismane Ge10H10, while the remaining members of the series show a progressive decrease in stability with increasing n. Germanium systems are characterized by lower stress energy, lower binding energy, and lower formation enthalpy compared to carbon and silicon systems, with the trends in the main characteristics corresponding to those observed for carbon and silicon derivatives.

About the authors

D. V. Steglenko

Research Institute of Physical and Organic Chemistry, Southern Federal University

Email: dvsteglenko@sfedu.ru
Rostov-on-Don, 344090 Russia

T. N. Gribanova

Research Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344090 Russia

R. M. Minyaev

Research Institute of Physical and Organic Chemistry, Southern Federal University

Rostov-on-Don, 344090 Russia

References

  1. Greenberg A., Liebman J.F. Strained Organic Molecules. New York: Academic Press, 1978.
  2. Gribanova T.N., Minkin V.I., Minyaev R.M. in: Strained Hydrocarbons / Ed. H. Dodziuk. Weinheim: Wiley-VCH 2009. P. 49. doi: 10.1002/9783527627134.ch2
  3. Грибанова Т.Н., Миняев Р.М., Минкин В.И. // Докл. АН. 2006. Т. 411. № 1. С. 62; Gribanova T.N., Minyaev R.M., Minkin V.I. // Doklady Chem. 2006. Vol. 411. P. 193. doi: 10.1134/S0012500806110012
  4. Грибанова Т.Н., Миняев Р.М., Минкин В.И. // ЖОрХ. 2007. Т. 43. № 8. С. 1152; Gribanova T.N., Minyaev R.M., Minkin V.I. // Russ. J. Org. Chem. 2007. Vol. 43. P. 1144. doi: 10.1134/S107042800708009X
  5. Disch R.L., Schulman J.M. // J. Am. Chem. Soc. 1988. Vol. 110. P. 2102. doi: 10.1021/ja00215a015
  6. Nagase S. // Acc. Chem. Res. 1995. Vol. 28. P. 469. doi: 10.1021/ar00059a005
  7. Katz T.J., Acton N. // J. Am. Chem. Soc. 1973. Vol. 95. P. 2738. doi: 10.1021/ja00789a084
  8. Eaton P.E., Cole T.W. // J. Am. Chem. Soc. 1964. Vol. 86. P. 962. doi: 10.1021/ja01059a072
  9. Eaton P.E., Cole T.W. // J. Am. Chem. Soc. 1964. Vol. 86. P. 3157. doi: 10.1021/ja01069a041
  10. Eaton P.E., Or Y.S., Branca S.J., Ravi Shankar B.K. // Tetrahedron. 1986. Vol. 42. P. 1621. doi: 10.1016/S0040-4020(01)87579-7
  11. Zhang M.-X., Eaton P.E., Gilardi R. // Angew. Chem. Int. Ed. 2000. Vol. 39. P. 401. doi: 10.1002/(SICI)1521-3773(20000117)39:2<401::AID-ANIE401>3.0.CO;2-P
  12. Миняев Р.М., Грибанова Т.Н., Минкин В.И. // Докл. АН. 2013. Т. 453. № 5. С. 513; Minyaev R.M., Gribanova T.N., Minkin V.I. // Doklady Chem. 2013. Vol. 453. P. 270. doi: 10.1134/S0012500813120033
  13. Minyaev R.M., Minkin V.I., Gribanova T.N., Starikov A.G., Hoffmann R. // J. Org. Chem. 2003. Vol. 68. P. 8588. doi: 10.1021/jo034910l
  14. Bachrach S.M., Demoin D.W. // J. Org. Chem. 2006. Vol. 71. P. 5105. doi: 10.1021/jo060240i
  15. Грибанова Т.Н., Миняев Р.М., Минкин В.И. // Изв. АН. Сер. хим. 2023. Т. 72. № 11. С. 2565; Gribanova T.N., Minyaev R.M., Minkin V.I. // Russ. Chem. Bull. 2023. Vol. 72. P. 2565. doi: 10.1007/s11172-023-4060-2
  16. Pour N., Itzhaki L., Hoz B., Altus E., Basch H., Hoz S. // Angew. Chem. Int. Ed. 2006. Vol. 45. P. 5981. doi: 10.1002/anie.200601764
  17. Pour N., Altus E., Basch H., Hoz S. // J. Phys. Chem. (C). 2009. Vol. 113. P. 3467. doi: 10.1021/jp809791j
  18. Jarowski P.D., Diederich F., Houk K.N. // J. Org. Chem. 2005. Vol. 70. P. 1671. doi: 10.1021/jo0479819
  19. Грибанова Т.Н., Гапуренко О.А., Стариков А.Г., Миняев Р.М., Минкин В.И. // Докл. АН. 2008. Т. 422. № 5. С. 629; Gribanova T.N., Gapurenko O.A., Starikov A.G., Minyaev R.M., Minkin V.I. // Doklady Chem. 2008. Vol. 422. P. 255. doi: 10.1134/S0012500808100042
  20. Грибанова Т.Н., Миняев Р.М., Минкин В.И. // Докл. АН. 2007. Т. 412. № 1. С. 62; Gribanova T.N., Minyaev R.M., Minkin V.I. // Doklady Chem. 2007. Vol. 412. P. 1. doi: 10.1134/S0012500807010016
  21. Грибанова Т.Н., Миняев Р.М., Минкин В.И. // Докл. АН. 2008. Т. 418. № 2. С. 198; Gribanova T.N., Minyaev R.M., Minkin V.I. // Doklady Chem. 2008. Vol. 418. P. 10. doi: 10.1134/S0012500808010047
  22. Грибанова Т.Н., Миняев Р.М., Минкин В.И. // Изв. АН. Сер. хим. 2006. № 11. С. 1825; Gribanova T.N., Minyaev R.M., Minkin V.I. // Russ. Chem. Bull. 2006. Vol. 55. P. 1893. doi: 10.1007/s11172-006-0530-6
  23. Миняев Р.М., Грибанова Т.Н., Стариков А.Г., Гапуренко О.А., Минкин В.И. // Докл. АН. 2005. Т. 404. № 5. С. 632; Minyaev R.M., Gribanova T.N., Starikov A.G., Gapurenko O.A., Minkin V.I. // Doklady Chem. 2005. Vol. 404. P. 193. doi: 10.1007/s10631-005-0070-x
  24. Minyaev R.M., Gribanova T.N., Minkin V.I. in: Comprehensive Inorganic Chemistry II / Eds J. Reedijk, K. Poeppelmeier. Amsterdam: Elsevier, 2013. P. 109. doi: 10.1016/B978-0-08-097774-4.00904-9
  25. Sekiguchi A., Sakurai H. in: Studies in Inorganic Chemistry / Ed. R. Steudel. Amsterdam: Elsevier, 1992. P. 101. doi: 10.1016/B978-0-444-88933-1.50012-X
  26. Sekiguchi A., Lee V.Y. in: PATAI’S Chemistry of Functional Groups. Chichester: Wiley, 2009. doi: 10.1002/9780470682531.pat0267
  27. Sekiguchi A., Sakurai H. in: Advances in Organometallic Chemistry / Eds F. Gordon, A. Stone, R. West. New York: Academic Press, 1995. P. 1. doi: 10.1016/S0065-3055(08)60597-3
  28. Wang Y., Yuan X., Wang X., Yang M. // THEOCHEM. 2010. Vol. 955. P. 123. doi: 10.1016/j.theochem.2010.06.002
  29. Katin K.P., Grishakov K.S., Gimaldinova M.A., Maslov M.M. // Comput. Mater. Sci. 2020. Vol. 174. P. 109480. doi: 10.1016/j.commatsci.2019.109480
  30. Pour N., Altus E., Basch H., Hoz S. // J. Phys. Chem. (C). 2010. Vol. 114. P. 10386. doi: 10.1021/jp101966c
  31. Sekiguchi A., Kabuto C., Sakurai H. // Angew. Chem. Int. Ed. 1989. Vol. 28. P. 55. doi: 10.1002/anie.198900551
  32. Sekiguchi A., Tetsuo Y., Shigeru D., Sakurai H. // Phosphorus, Sulfur, Silicon, Relat. Elems. 1994. Vol. 93. P. 193. doi: 10.1080/10426509408021814
  33. Sekiguchi A., Yatabe T., Kamatani H., Kabuto C., Sakurai H. // J. Am. Chem. Soc. 1992. Vol. 114. P. 6260. doi: 10.1021/ja00041a063.
  34. Nagase S., Kobayashi K., Kudo T. // Main Group Metal Chemistry. 1994. Vol. 17. doi: 10.1515/MGMC.1994.17.1-4.171
  35. Nagase S. // Angew. Chem. Int. Ed. 1989. Vol. 28. P. 329. doi: 10.1002/anie.198903291
  36. Earley C.W. // J. Phys. Chem. (A). 2000. Vol. 104. P. 6622. doi: 10.1021/jp000090u
  37. Schultz H.P. // J. Org. Chem. 1965. Vol. 30. P. 1361. doi: 10.1021/jo01016a005
  38. Rayne S., Forest K. // Theoretical Chemistry Accounts. 2010. Vol. 127. P. 697. doi: 10.1007/s00214-010-0780-0
  39. Schleyer P.v.R., Maerker C., Dransfeld A., Jiao H., van Eikema Hommes N.J.R. // J. Am. Chem. Soc. 1996. Vol. 118. P. 6317. doi: 10.1021/ja960582d
  40. Moran D., Manoharan M., Heine T., Schleyer P.v.R. // Org. Lett. 2003. Vol. 5. P. 23. doi: 10.1021/ol027159w
  41. Becke A.D. // J. Chem. Phys. 1993. Vol. 98. P. 5648.
  42. Foresman J.B., Frisch A.E., Gaussian I. Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., 1996.
  43. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A.V., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams, Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Jr., Peralta J.E., Ogliaro F., Bearpark M.J., Heyd J.J., Brothers E.N., Kudin K.N., Staroverov V.N., Keith T.A., Kobayashi R., Normand J., Raghavachari K., Rendell A.P., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
  44. Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A. // J. Chem. Phys. 1997. Vol. 106. P. 1063. doi: 10.1063/1.473182
  45. Petersson G.A., Tensfeldt T.G., Montgomery J.A., Jr. // J. Chem. Phys. 1991. Vol. 94. P. 6091. doi: 10.1063/1.460448
  46. Zhurko G., Zhurko D. ChemCraft. 2009. http://www. chemcraftprog. com. 2009.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences