Effect of Coordination Environment on Luminescence of Crystalline Cerium Halides

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The effect of the coordination environment on the photoluminescence of crystalline cerium trihalides CeL3 (L = F, Cl, Br, I) was investigated. It was found that in the series of anions F > Cl > Br > I a bathochromic shift of luminescence maxima is observed, which is correlated with an increase in the degree of Ce–L bond covalency and anion polarisability. Using PBE/3ζ density functional theory and classical Pauling’s approach, calculations of anion polarisability and Ce–L bonding parameters were carried out, revealing a direct correlation between these values and the long-wavelength shift of maxima. This fact allows us to postulate that the bathochromic shift of maxima in the photoluminescence and photoluminescence excitation spectra of solid CeL3 is due to the nepheloxetic effect, namely, an increase in the degree of covalency of the Ce–L bond, leading to a decrease in the energy gap between the valence zone (np-levels of L) and the conduction zone (5d-levels of Ce3+). The results demonstrate the possibility of controlling the spectral characteristics of the luminescence of Ce3+ compounds by changing the coordination environment, which is important for the development of new cerium-containing luminophores.

About the authors

D. I. Galimov

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences

Email: galimovdi@mail.ru
Ufa, 450075 Russia

D. R. Gazeeva

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences

Ufa, 450075 Russia

S. M. Yakupova

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences

Ufa, 450075 Russia

K. S. Vasilyuk

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences

Ufa, 450075 Russia

D. Sh. Sabirov

Institute of Petrochemistry and Catalysis Ufa Federal Research Center of the Russian Academy of Sciences

Ufa, 450075 Russia

References

  1. De Acha N., Elosua C., Matias I., Arregui F.J. // Sensors. 2017. Vol. 17. P. 2826. doi: 10.3390/s17122826
  2. Gomes J., Serra O.A. // J. Mater. Sci. 2008. Vol. 43. P. 546. doi: 10.1007/s10853-007-1777-5
  3. Jing H., Guo C., Zhang G., Su X., Yang Z., Jeong J.H. // J. Mater. Chem. 2012. Vol. 22. P. 13612. doi: 10.1039/C2JM32761A
  4. Samir E., Shehata N., Kandas I. // J. Nanophoton. 2018. Vol. 12. P. 016007-1
  5. Qiao Y., Schelter E.J. // Acc. Chem. Res. 2018. Vol. 51. P. 2926. doi: 10.1021/acs.accounts.8b00336
  6. Yin H., Carroll P.J., Manor B.C., Anna J.M., Schelter E.J. // J. Am. Chem. Soc. 2016. Vol. 138. P. 5984. doi: 10.1021/jacs.6b02248
  7. Guo J.-J., Hu A., Chen Y., Sun J., Tang H., Zuo Z. // Angew. Chem. Int. Ed. 2016. Vol. 55. P. 15319. doi: 10.1002/anie.201609035
  8. Dorenbos P. // J. Lumin. 2000. Vol. 91. P. 155. doi: 10.1016/S0022-2313(00)00229-5
  9. Dorenbos P. // J. Lumin. 2000. Vol. 91. P. 91. doi: 10.1016/s0022-2313(00)00197-6
  10. Hazin P.N., Lakshminarayan C., Brinen L.S., Knee J.L., Bruno J.W., Streib W.E., Folting K. // Inorg. Chem. 1988. Vol. 27. P. 1393. doi: 10.1021/ic00281a019
  11. Kaminskii A.A. Crystalline lasers: Physical processes and operating schemes. CRC Press: Boca Raton, 1996. 592 p.
  12. Kochan O., Chornodolskyy Y., Selech J., Karnaushenko V., Przystupa K., Kotlov A., Demkiv T., Vistovskyy V., Stryhanyuk H., Rodnyi P., Gektin A., Voloshinovskii A. // Materials. 2021. Vol. 14. P. 4243. doi: 10.3390/ma14154243
  13. Meyer L.V., Schonfeld F., Zurawski A., Mai M., Feldmann C., Muller-Buschbaum K. // Dalton Trans. 2015. Vol. 44. P. 4070. doi: 10.1039/C4DT03578J
  14. Blasse G., Bril A. // J. Chem. Phys. 1967. Vol. 47. P. 5139. doi: 10.1063/1.1701771
  15. Wang J., Mei Y., Tanner P.A. // J. Lumin. 2014. Vol. 146. P. 440. doi: 10.1016/j.jlumin.2013.10.030
  16. Sun Z., Li Y., Zhang X., Yao M., Ma L., Chen W. // J. Nanosci. Nanotech. 2009. Vol. 9. P. 6283. doi: 10.1166/jnn.2009.1821
  17. Sharipov G.L., Gareev B.M., Vasilyuk K.S., Galimov D.I., Abdrakhmanov A.M. // Ultrason. Sonochem. 2021. Vol. 70. P. 105313. doi: 10.1016/j.ultsonch.2020.105313
  18. Wang C., Liu X., She C., Li Y. // Polyhedron. 2021. Vol. 196. P. 115013. doi: 10.1016/j.poly.2020.115013
  19. Bulgakov R.G., Gazeeva D.R., Galimov D.I. // J. Lumin. 2017. Vol. 183. P. 159. doi: 10.1016/j.jlumin.2016.11.030
  20. Kunkely H., Vogler A. // Inorg. Chem. Commun. 2006. Vol. 9. P. 1. doi: 10.1016/j.inoche.2005.08.017
  21. Hazin P.N., Bruno J.W., Brittain H.G. // Organometal. 1987. Vol. 6. P. 913. doi: 10.1021/om00148a002
  22. Ruščić B., Goodman G.L., Berkowitz J. // J. Chem. Phys. 1983. Vol. 78. P. 5443. doi: 10.1063/1.445473
  23. Chornodolskyy Y., Karnaushenko V., Vistovskyy V., Syrotyuk S., Gektin A., Voloshinovskii A. // J. Lumin. 2021. Vol. 237. P. 118147. doi: 10.1016/j.jlumin.2021.118147
  24. Galimov D.I., Yakupova S.M., Vasilyuk K.S., Sabirov D.Sh., Bulgakov R.G. // J. Photochem. Photobiol. A. 2020. Vol. 403. P. 112839. doi: 10.1016/j.jphotochem.2020.112839
  25. Blasse G., Bril A. // Philips Techn. Rev. 1970. Vol. 31. P. 303.
  26. Звонарев Е.Н., Козлов О.И., Колегов Д.Ф., Маширев В.Л., Шаталов В.В., Басиев Т.Т., Дорошенко М.Е., Конюшкин В.А., Осико В.В., Папашвили А.Г., Сигачев В.Б., Гурский И.Э., Кафтанов В.С., Семенов Ю.А. // Атомная энергия. 1997. Т. 82. Вып. 4. С. 301.
  27. Galimov D.I., Yakupova S.M., Vasilyuk K.S., Bulgakov R.G. // J. Photochem. Photobiol. (A). 2024. Vol. 451. P. 115489. doi: 10.1016/j.jphotochem.2024.115489
  28. Wasse J.C., Salmon P.S. // J. Phys. Condens. Matter. 1999. Vol. 11. P. 1381. doi: 10.1088/0953-8984/11/6/004
  29. Nishida I., Tatsumi K., Muto Sh. // Mater. Trans. 2009. Vol. 50. No. 5 P. 952. doi: 10.2320/matertrans.MC200828
  30. Pyykkö P., Atsumi M. // Chem. Eur. J. 2009. Vol. 15. P. 186. doi: 10.1002/chem.200800987
  31. Li K., Xue D. // J. Phys. Chem. (A). 2006. Vol. 110. P. 11332. doi: 10.1021/jp062886k
  32. Pauling L. The Nature of the Chemical Bond. Cornell University Press, 1960. 644 p.
  33. Jorgensen C.K. // Progr. Inorg. Chem. 1962. Vol. 4. P. 73.
  34. Dorenbos P. // Phys. Rev. (B). 2000. Vol. 62. P. 15640. doi: 10.1103/PhysRevB.62.15640
  35. Dorenbos P. // J. Lumin. 2003. Vol. 104. P. 239. doi: 10.1016/S0022-2313(03)00078-4
  36. Dorenbos P. // Phys. Rev. (B). 2002. Vol. 65. P. 235110. doi: 10.1103/PhysRevB.65.235110
  37. Dorenbos P. // J. Mater. Chem. 2012. Vol. 22. P. 22344. doi: 10.1039/C2JM34252A
  38. Behrsing T., Bond A.M., Deacon G.B., Forsyth C.M., Forsyth M., Kamble K.J., Skelton B.W., White A.H. // Inorg. Chim. Acta. 2003. Vol. 352. P. 229. doi: 10.1016/S0020-1693(03)00147-6
  39. Laikov D.N., Ustynyuk L.A. // Russ. Chem. Bull. Int. Ed. 2005. Vol. 54. P. 820. doi: 10.1007/s11172-005-0329-x
  40. Sabirov D.Sh., Zakirova A.D., Tukhbatullina A.A., Gubaydullin I.M., Bulgakov R.G. // RSC Adv. 2013. Vol. 3. P. 1818. doi: 10.1039/c2ra22404f

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences