Determination of the Charge State of Transition Metal Ions in Pyrochlore Bi2Cu1/3Ni1/3Co1/3Ta2O9±δ by X-Ray Absorption Spectroscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Cubic pyrochlore Bi2Cu1/3Ni1/3Co1/3Ta2O9±δ [space group Fd-3m, a = 10.5323(8) Å] was synthesized from oxides for the first time using the solid-phase reaction method. The ceramics are characterized by a low-porosity grain-free microstructure. The chemical state of transition element cations in multi-element pyrochlore was characterized using photoelectron spectroscopy (XPS) and NEXAFS. For pyrochlore, a characteristic shift of the Ta4f spectrum to lower energies by 0.65 eV is observed, which causes the effective charge of tantalum cations +(5–δ). It is shown that the NEXAFS Cu2p spectra of oxide ceramics, according to the main characteristics of the spectrum, represent a superposition of the spectra of Cu(I) and Cu(II) cations. Based on the analysis of the relative intensity of the peaks in the XPS spectrum of Cu2p, the quantitative ratio of Cu(I)/Cu(II) cations in pyrochlore is 1.06. The NEXAFS Ni2p spectrum of ceramics coincides with the spectrum of NiO according to the main characteristics of the spectrum. XPS studies indicate the state of Ni(III). According to the nature of the Co2p spectrum, cobalt ions are in the state of Co(II,III).

Sobre autores

K. Parshukova

Pitirim Sorokin Syktyvkar State University

Email: kristinaparshukova17@gmail.com
Syktyvkar, 167001 Russia

S. Nekipelov

Institute of Physics and Mathematics, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Syktyvkar, 167982 Russia

A. Lebedev

National Research Center "Kurchatov Institute"

Moscow, 123182 Russia

B. Makeev

Institute of Geology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Syktyvkar, 167982 Russia

R. Korolev

Pitirim Sorokin Syktyvkar State University

Syktyvkar, 167001 Russia

N. Zhuk

Pitirim Sorokin Syktyvkar State University

Syktyvkar, 167001 Russia

Bibliografia

  1. Hiroi Z., Yamaura J.-I., Yonezawa S., Harimaп H. // Physica (C). 2007. Vol. 460–462. P. 20. doi: 10.1016/j.physc.2007.03.023
  2. Giampaoli G., Siritanon T., Day B., Subramanian M.A. // Prog. Solid State Chem. 2018. Vol.50, P. 16. doi: 10.1016/j.progsolidstchem.2018.06.001
  3. Du H., Yao X. // J. Mater. Sci. Mater. Electron. 2004. Vol. 15. P. 613. doi: 10.1023/B:JMSE.0000036041.84889.b2
  4. Murugesan S., Huda M.N., Yan Y., Al-Jassim M.M., Subramanian V. // J. Phys. Chem. (C). 2010. Vol. 114. P. 10598. doi: 10.1021/j.p906252r
  5. Lufaso M.W., Vanderah T.A., Pazos I.M., Pazos Il.M., Levin I., Roth R.S., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3900. doi: 10.1016/j.jssc.2006.08.036
  6. Vanderah T.A., Lufaso M.W., Adler A.U., Levin I., Nino J.C., Provenzano V., Schenck P.K. // J. Solid State Chem. 2006. Vol. 179. P. 3467. doi: 10.1016/j.jssc.2006.07.014
  7. Levin I., Amos T.G., Nino J.C., Vanderah T.A., Randall C.A., Lanagan M.T. // J. Solid State Chem. 2002. Vol. 168. P. 69. doi: 10.1006/jssc.2002.9681
  8. Nguyen H.B., Noren L., Liu Y., Withers R., Wei X., Elcombe M.M. // J. Solid State Chem. 2007. Vol. 180. P. 2558. doi: 10.1016/j.jssc.2007.07.003
  9. Vanderah T.A., Siegrist T., Lufaso M.W., Yeager M.C., Roth R.S., Nino J.C., Yates S. // Eur. J. Inorg. Chem. 2006. P. 4908. doi: 10.1002/ejic.200600661
  10. Zhuk N.A., Sekushin N.А., Krzhizhanovskaya M.G., Kharton V.V. // Solid State Ionics. 2022. Vol. 377. P. 115868. doi: 10.1016/j.ssi.2022.115868
  11. Zhuk N.A., Sekushin N.A., Semenov V.G., Fedorova A.V., Selyutin A.A., Krzhizhanovskaya M.G., Lutoev V.P., Makeev B.A., Kharton V.V., Sivkov D.N., Shpynova A.D. // J. Alloys Compd. 2022. Vol. 903. P. 163928. doi: 10.1016/j.jallcom.2022.163928
  12. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. Vol.15, P. 55. doi: 10.1016/0079-6786(83)90001-8
  13. Kamba S., Porokhonskyy V., Pashkin A., Bovtun V., Petzelt J., Nino J.C., Trolier-McKinstry S., Lanagan M.T., Randall C.A. // Phys. Rev. (B). 2002. Vol. 66. P. 054106. doi: 10.1103/PhysRevB.66.054106
  14. Valant M. // J. Am. Ceram. Soc. 2009. Vol. 92. P. 955. doi: 10.1111/j.1551-2916.2009. 02984.x
  15. Rylchenko E.P., Makeev B.A., Sivkov D.V., Korolev R.I., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 486. doi: 10.22226/2410-3535-2022-4-486-492
  16. Parshukova K.N., Sekushin N.A., Makeev B.A, Krzhizhanovskaya M.G., Koroleva A.V., Zhuk N.A. // Lett. Mater. 2022. Vol. 12. P. 469. doi: 10.22226/2410-3535-2022-4-469-474
  17. Akselrud L.G., Grin Y.N., Zavalii P.Y., Pecharsky V.K., Fundamenskii V.S. // Thes. Rep. XII Eur. Crystallogr. Meet. 1989. P. 155.
  18. Zhuk N.A., Krzhizhanovskaya M.G., Koroleva A.V., Koroleva A.V., Nekipelov S.V., Kharton V.V., Sekushin N.A. // Inorg. Chem. 2021. Vol. 60. P. 4924. doi: 10.1021/acs.inorgchem.1c00007
  19. Zhuk N.A., Krzhizhanovskaya M.G., Sekushin N.A., Sivkov D.V., Abdurakhmanov I.E. // J. Mater. Res. Technol. 2023. Vol. 22. P. 1791. doi: 10.1016/j.jmrt.2022.12.059
  20. Shannon R.D. // Acta Crystallogr. (А). 1976. Vol. 32. P. 751. doi: 10.1107/S0567739476001551
  21. Hassel M., Freund H.-J. // Surface Science Spectra. 1996. Vol. 4. P. 273. doi: 10.1116/1.1247797
  22. Regan T.J., Ohldag H., Stamm C., Nolting F., Lüning J., Stöhr J., White R.L. // Phys. Rev. (B). 2001. Vol. 64. P. 214422. doi: 10.1103/PhysRevB.64.214422
  23. Mansour A.N., Melendres C.A. // Surface Science Spectra. 1994. Vol. 3. P. 263. doi: 10.1116/1.1247755
  24. Preda I., Abbate M., Gutiérrez A., Palacín S., Vollmer A., Soriano L. // J. Electron Spectrosc. 2007. Vol. 156–158. P. 111. doi: 10.1016/j.elspec.2006.11.030
  25. Barreca D., Gasparotto A., Tondello E. // Surface Science Spectra 2007. Vol. 14. P. 41. doi: 10.1116/11.20080701
  26. Grioni M., van Acker J.F., Czyžyk M.T., Fuggle J.C. // Phys. Rev. (B). 1992. Vol. 45. P. 3309. https:// doi.org/10.1103/physrevb.45.3309

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025