Влияние модификации ионами Li+ на сорбционную активность цеолита NaX по отношению к компонентам водородсодержащих газовых смесей
- Авторы: Темнов М.С.1, Меронюк К.И.1, Усачев В.Б.2, Акулинин Е.И.1, Дворецкий С.И.1, Туголуков Е.Н.1, Дьячкова Т.П.1, Дворецкий Д.С.1
-
Учреждения:
- Тамбовский государственный технический университет
- Протвинский филиал АО «НИИ НПО «ЛУЧ»
- Выпуск: Том 98, № 9-10 (2025)
- Страницы: 474-483
- Раздел: Водородные технологии
- URL: https://journals.eco-vector.com/0044-4618/article/view/696743
- DOI: https://doi.org/10.31857/S0044461825080013
- ID: 696743
Цитировать
Полный текст
Аннотация
и CH4 на них. Показана возможность увеличения сорбционной емкости цеолита NaХ по отношению к CO и CH4 на 18 и 28% соответственно при снижении поглощения H2 за счет ионообменной модификации.
Ключевые слова
Об авторах
М. С. Темнов
Тамбовский государственный технический университет392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
К. И. Меронюк
Тамбовский государственный технический университет392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
В. Б. Усачев
Протвинский филиал АО «НИИ НПО «ЛУЧ»142281, Московская обл, г. Протвино, ул. Железнодорожная, д. 5
Е. И. Акулинин
Тамбовский государственный технический университет392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
С. И. Дворецкий
Тамбовский государственный технический университет392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
Е. Н. Туголуков
Тамбовский государственный технический университет392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
Т. П. Дьячкова
Тамбовский государственный технический университет392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
Д. С. Дворецкий
Тамбовский государственный технический университет
Email: dvoretsky@yahoo.com
392000, г. Тамбов, ул. Советская, д. 106/5, пом. 2
Список литературы
- Grube T., Hohlein B. Costs of making hydrogen available in supply systems based on renewables // Hydrogen and fuel cell. Heidelberg: Springer, 2016. P. 223–237. https://doi.org/10.1007/978-3-662-44972-1_13
- Shabbani H. J. K., Othman M. R., Al-Janabi S. K., Barron A. R., Helwani Z. H2 purification employing pressure swing adsorption process: Parametric and bibliometric review // Int. J. Hydrog. Energy. 2024. V. 50. P. 674–699. https://doi.org/10.1016/j.ijhydene.2023.11.069
- Zhang N., Hu S., Xin Q. Optimization of pressure swing adsorption in a three-layered bed for hydrogen purification using machine learning model // Sci. Rep. 2025. V. 15. ID e14193. https://doi.org/10.1038/s41598-025-97139-4
- Yang T., Yang Z., Li C., Tong L., Chen B., Li X., Yuan Y., Yuan C., Xiao J. Hydrogen purification performance of pressure swing adsorption in coal-derived activated carbon/zeolite 13X layered bed // Appl. Sci. 2025. V. 15. N 10. ID e5505. https://doi.org/10.3390/app15105505
- Li C., Luo H., Yuan Y., Tong L., Chen B., Yang T., Yuan C., Chahine R., Xiao J. Equilibrium and dynamic adsorption characteristics of zeolite 5A, LiX, 13X and MOF UTSA-16 adsorbents for hydrogen purification // Int. J. Hydrog. Energy. 2025. V. 140. P. 889–899. https://doi.org/10.1016/j.ijhydene.2025.04.022
- Armbruster T., Gunter M. E. Crystal structure of natural zeolites // Rev. Mineral. Geochem. 2001. V. 45. N 1. P. 1–67. https://doi.org/10.2138/rmg.2001.45.1
- Brea P., Delgado J. A., Águeda V. I., Gutiérrez P., Uguina M. A. Multicomponent adsorption of H2, CH4, CO and CO2 in zeolites NaX, CaX and MgX. Evaluation of performance in PSA cycles for hydrogen purification // Micropor. Mesopor. Mater. 2019. V. 286. P. 187–198. https://doi.org/10.1016/j.micromeso.2019.05.021
- Barrett P. A., Stephenson N. A. Adsorption properties of zeolites // Zeolites and Ordered Porous Solids. 2011. V. 149. P. 149–181.
- Sanchez C. M., Pérez-Pariente J. Zeolites and ordered porous solids: Fundamentals and applications. Valencia: Editorial Universitat Politècnica de València, 2011. P. 178–179.
- Devasia G., Kumar R., Vaval N., Krishnamurty S. Insights into adsorption of various gases on extra-framework cations of zeolite: A dispersion corrected DFT study on zeolite cluster models with Li+, Na+ and K+ charge compensating ions // Micropor. Mesopor. Mater. 2023. V. 361. ID 112739. https://doi.org/10.1016/j.micromeso.2023.112739
- Jin Y., Xu Q., Zheng F., Lu J. Enhancement in CO2 adsorption by zeolite synthesized from co-combustion ash of coal and rice husk modified with lithium ion // J. Energy Inst. 2023. V. 110. ID 101348. https://doi.org/10.1016/j.joei.2023.101348
- Shrotri A. R., Birje A. R., Niphadkar P. S., Bokade V. V., Mali N. A., Nandanwar S. U. Performance of Li exchange hierarchical X zeolite for CO2 adsorption and H2 separation // J. Ind. Eng. Chem. 2024. V. 133. P. 505–514. https://doi.org/10.1016/j.jiec.2023.12.027
- Shrotri A. R., Birje A. R., Nandanwar S. U. Pressure swing adsorption of Li exchange hierarchical X zeolite for pure hydrogen from binary gas mixture // Int. J. Hydrogen Energy. 2024. V. 73. P. 138–147. https://doi.org/10.1016/j.ijhydene.2024.06.011
- Кульпина Ю. Н., Прокофьев В. Ю., Гордина Н. Е., Петухова Н. В., Газахова С. И. Использование ИК-спектроскопии для изучения структуры низкомодульных цеолитов // Изв. вузов. Химия и хим. технология. 2017. Т. 60. № 5. С. 44–50. https://doi.org/10.6060/tcct.2017605.5405
- Nibou D., Mekatel H., Amokrane S., Barkat M., Trari M. Adsorption of Zn2+ ions onto NaA and NaX zeolites: Kinetic, equilibrium and thermodynamic studies // J. Hazard. Mater. 2010. V. 173. N 1–3. P. 637–646. https://doi.org/10.1016/j.jhazmat.2009.08.132
- Joshi U. D., Joshi P. N., Tamhankar S. S., Joshi V. V., Rode C. V., Shiralkar V. P. Effect of nonframework cations and crystallinity on the basicity of NaX zeolites // Appl. Catal. A. 2003. V. 239. N 1–2. P. 209–220. https://doi.org/10.1016/S0926-860X(02)00391-5
- Lai P. P., Rees L. V. C. Szilard–Chalmers cation recoil studies in zeolites X and Y. Part 1. Ion exchange in zeolites X and Y // J. Chem. Soc. Faraday Trans. 1. 1976. V. 72. P. 1809–1817. https://doi.org/10.1039/F19767201827
Дополнительные файлы



