Development of a method for assessing the degree of hydrogenation of titanium alloy VT1-0 by acoustic method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, the possibilities of using a non-destructive acoustic method to determine the degree of hydrogenation of titanium alloy VT1-0 are investigated. The features of the use of various acoustic parameters for the construction of engineering techniques for determining the structural state of a titanium alloy at various stages of its hydrogenation are analyzed. A number of computational and experimental methods for determining the mass fraction of hydrogen in a titanium alloy are proposed, based on the use of its acoustic characteristics, which increase the accuracy and stability of the algorithms underlying the calculation part of the methods. The sources of errors of the proposed methods, the limits of their applicability, as well as the requirements for hardware and software for their implementation are analyzed. The results of acoustic measurements carried out on samples from the VT1-0 alloy are compared with the ideas about the patterns of its structural changes during its hydrogenation. The possibility of creating engineering algorithms for assessing the state of the material of products subjected to hydrogenation on the basis of experimental data obtained in order to prevent dangerous degradation of its operational properties is shown.

About the authors

A. A. Khlybov

NNSTU n. a. R. E. Alekseev

Author for correspondence.
Email: hlybov_52@mail.ru
Russian Federation, Nizhny Novgorod

A. L. Uglov

NNSTU n. a. R. E. Alekseev

Email: hlybov_52@mail.ru
Russian Federation, Nizhny Novgorod

D. A. Ryabov

NNSTU n. a. R. E. Alekseev

Email: riabov.da@nntu.ru
Russian Federation, Nizhny Novgorod

References

  1. Khlybov A.A., Ryabov D.A.,Shishulin D.N., Pichkov S.N. Physical Acoustics Methods for Assessing Hydrogen Embrittlement in PT-7M Grade Titanium Alloy // Inorganic Materials: Applied Research. 2023. V. 14. No. 1. P. 164—171. doi: 10.1134/S2075113323010173
  2. Schur D.V., Zaginaichenko S.Yu., Veziroglu A., Veziroglu T.N., Zolotarenko A.D., Gabdullin M.T., Ramazanov T.S., Zolotarenko A.D., Zolotarenko A.D. Features of Studying Atomic Hydrogen — Metal Systems. Alternative Energy and Ecology (ISJAEE). 2019. V. 13—15. P. 62—87. (In Russ.) doi: 10.15518/isjaee.2019.13-15.62-87
  3. Laadel Nour-Eddine, Mansori Mohamed El, Kang Nan, Marlin Samuel, Boussant-Roux Yves. Permeation barriers for hydrogen embrittlement prevention in metals — A review on mechanisms, materials suitability and efficiency // International Journal of Hydrogen Energy. 2022. V. 47. Is. 76. P. 32707—32731.
  4. Verkhovsky A.E., Gadzhiev K.G., Urtenov D.S., Gadzhiev D.K. Influence of Hydrogenation and Temperature on the Service Characteristics of Titanium Alloy // International Research Journal. Jan. 2021. No. 1 (103). doi: 10.23670/IRJ.2021.103.1.007
  5. Kantyukov R.R., Zapevalov D.N., Vagapov R.K. Effect of hydrogen on steels in hydrogen sulfide-containing and other environments at gas facilities // Izvestiya. Ferrous Metallurgy. 2024. V. 67 (1). P. 53—64. doi: 10.17073/0368-0797-2024-1-53-64
  6. Chernov I.P., Cherdantsev Yu.P., Mamontov A.P., Panin A.V., Nikitenkov N.N., Leader A.M., Garanin G.V. Non-destructive methods of control of hydrogen embrittlement of structural materials // Alternative energy and ecology. 2009. No. 2. P. 15—22.
  7. Leader A.M., Larionov V.V., Garanin G.V., Krening M.H. Method of ultrasonic determination of hydrogen in titanium-based materials and products // Journal of Technical Physics. 2013. V. 83. Is. 9. P. 157—158.
  8. Polyansky V.A., Belyaev A.K., Polyansky A.M., Tretyakov D.A., Yakovlev Yu.A. Hydrogen brittleness as a result of surface phenomena during deformation of metals // Physical Mesomechanics. 2022. V. 25 (3). P. 27—37.
  9. Gomes P.M., Domizzi G, Lopez Pumagera M.I., Ruzzante J.E. Characterization of hydrogen concentration in Zircaloy-4 using ultrasonic techniques // Journal of Nuclear Materials. 2006. V. 353. P. 167—176.
  10. Chunjie Ye., Wenbin Kan, Yongfeng Li, Hongliang Pan. Experimental study of hydrogen embrittlement on AISI 304 stainless steels and Rayleigh wave characterization // Engineering Failure Analysis. 2013. V. 34. P. 228—234.
  11. Yebo Lu, Wenbin Kan, Hongliang Pan. Effect of hydrogen concentration on the ultrasonic propagation properties in 304 stainless steel / International Conference on Fracture. ICF12. Ottawa. 2009.
  12. Khlybov A.A., Uglov A.L., Bakiev T.A., Ryabov D.A. Assessment of the degree of damage in structural materials using the parameters of structural acoustic noise // Nondestructive Testing and Evaluation. 2022. V. 38 (2). P. 331—350. doi: 10.1080/10589759.2022.2126470
  13. Khlybov A.A., Uglov A.L. On the use of structural noise parameters in testing 20GL steel with rayleigh surface waves under elastoplastic deformation // Defectoskopiya. 2021. No. 7. P. 3—10. doi: 10.31857/S0130308221070010
  14. Kachanov V.K., Sokolov I.V., Timofeev D.V., Pervushin V.V. Structure analysis of products made of polymer materials using instantaneous spectra of ultrasonic signals // Defectoskopiya. 2019. No. 6. P. 3—10. doi: 10.1134/S0130308219060010
  15. Romanishin R.I., Romanishin I.M. Assessment of scattered damage in structural materials // Defectoskopiya. 2019. No. 2. P. 25—35. doi: 10.1134/S0130308219020039
  16. Kartashev V.G., Kachanov V.K., Sokolov I.V., Voronkova L.V., Konts R.V. Structural noise during ultrasonic inspection of products made of materials with a complex structure // Defectoskopiya. 2018. No. 1. P. 19—32.
  17. Romanishin R.I., Romanishin I.M. Processing of backscattered signal in ultrasonic testing // Defectoskopiya. 2018. No. 6. P. 11—16. doi: 10.1134/S1061830918060074
  18. Hirsekorn S., Van Аndel P.W., Netzelmann U. Ultrasonic Methods to Detect and Evaluate Damage in Steel // NDT & E. 1998. 15:6. P. 373—393.
  19. Han Y.K., Thompson R.B. Ultrasonic backscattering in duplex microstructures: Theory and application to titanium alloys // Metall. Mater. Trans. 1997. A28. P. 91—104.
  20. Khlybov A.A., Uglov A.L., Demchenko A.A. On the spectral-acoustic method for estimating the porosity of metals obtained by hot isostatic pressing // Defectoskopiya. 2022. No. 12. P. 3—16.
  21. Saraev L.A. On the theory of elasticity of micro-inhomogeneous media with account for stochastic changes in the connectivity of constituent components // PNRPU Mechanics Bulletin. 2021. No. 2. P. 132—143. doi: 10.15593/perm.mech/2021.2.12
  22. Mishakin V.V., Gonchar A.V., Kurashkin K.V., Klyushnikov V.A., Kachanov M. On low-cycle fatigue of austenitic steel. Part I: Changes of Poisson’s ratio and elastic anisotropy // International Journal of Engineering Science. 2021. V. 168. P. 103567.
  23. Kachanov M., Mishakin V.V., Pronina Yu. On low cycle fatigue of austenitic steel. Part II: Extraction of information on microcrack density from a combination of the acoustic and eddy current data // International Journal of Engineering Science. 2021. V. 169. P. 103569.
  24. Muravyov V.V., Bayteryakov A.V. Influence of operational load-bearing of rails on acoustic structural noises // Defectoskopiya. 2016. No. 11. P. 50—58. doi: 10.31857/S0130308221070010
  25. Murav’ev V.V., Kotolomov A.Yu., Baiteryakov A.V., Dedov A.I. The methodology of determining the grain sizeby acoustic structural noise of steel // Izvestiya. Ferrous Metallurgy. 2014. V. 57 (11). P. 65—69. (In Russ.). doi: 10.17073/0368-0797-2014-11-65-69
  26. Sergienko B.A. Tsifrovaya obrabotka signalov (Digital signal processing). St. Petersburg: Peter, 2006. 751 p.
  27. Hamming R.V. Tsifrovyye fil'try (Digital filters). Moscow: Nedra, 1987. 221 p.
  28. Hayes M. H. Statistical digital signal processing and modeling. John Wiley & Sons, 2009. 624 p.
  29. Welch P. The use of the fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms // IEEE Trans. Audio Electroacoust. 1967. V. 15. P. 70—73.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences