Monitoring of relative magnetic permeability variation during cyclic bending testing of austenitic steel grade 10Kh18n10t samples
- 作者: Kochnev A.V.1, Rigmant M.B.1, Korkh M.K.1, Gordeev N.V.1, Matosyan A.M.1
-
隶属关系:
- M.N. Mikheev Institute of Metal Physics of UB RAS
- 期: 编号 9 (2024)
- 页面: 52-56
- 栏目: По материалам XXXV Уральской конференции «Физические методы неразрушающего контроля (Янусовские чтения)»
- URL: https://journals.eco-vector.com/0130-3082/article/view/649308
- DOI: https://doi.org/10.31857/S0130308224090054
- ID: 649308
如何引用文章
详细
Cyclic bending testing of austenitic chromium-nickel steel grade 10Kh18N10T samples was carried out. Evalution of relative magnetic permeability showed its noticeable increase when the samples became fractured. This increase is related to deformation martensite appearance. Additional experiment showed, that deformation martensite formation starts before the actual destruction of the sample.
全文:

作者简介
A. Kochnev
M.N. Mikheev Institute of Metal Physics of UB RAS
编辑信件的主要联系方式.
Email: kochnevav@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, Sofia Kovalevskaya st., 18
M. Rigmant
M.N. Mikheev Institute of Metal Physics of UB RAS
Email: kochnevav@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, Sofia Kovalevskaya st., 18
M. Korkh
M.N. Mikheev Institute of Metal Physics of UB RAS
Email: kochnevav@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, Sofia Kovalevskaya st., 18
N. Gordeev
M.N. Mikheev Institute of Metal Physics of UB RAS
Email: kochnevav@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, Sofia Kovalevskaya st., 18
A. Matosyan
M.N. Mikheev Institute of Metal Physics of UB RAS
Email: kochnevav@imp.uran.ru
俄罗斯联邦, 620108, Yekaterinburg, Sofia Kovalevskaya st., 18
参考
- Korneev A.E., Kharina I.L. Vliyanie deformatsionnogo martensita na svoistva austenitnoi stali 316L // Tyazhyoloe mashinostroenie. 2014. № 11—12. P. 14—20.
- Shanyavskii A.A., Soldatenkov A.P. Novye paradigmy v opisanii ustalosti metallov // Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universtiteta. Mekhanika. 2019. № 1. P. 196—207.
- Puchi-Cabrera E.S., Staia M.H., Tovar C., Ochoa-Pérez E.A. High cycle fatigue of 316L stainless steel // International Journal of Fatigue. 2008. V. 30. P. 2140—2146.
- Berns H., Gavriljuk V.G., Nabiran N., Petrov Yu.N., Riedner S., Trophimova L.N. Fatigue and Structural Changes of High Interstitial Stainless Austenitic Steels // Steel Research International. 2010. V. 81. P. 299—307.
- Farrahi G.H., Minaii K., Bahai H. Fretting fatigue behavior of 316L stainless steel under combined loading conditions // International Journal of Fatigue. 2019. V. 128. P. 105206.
- Mishakin V., Gonchar A., Kurashkin K., Kachanov M. Prediction of fatigue life of metastable austenitic steel by a combination of acoustic and eddy current data // International Journal of Fatigue. 2020. V. 141. P. 105846.
- Mishakin V.V., Gonchar A.V., Kurashkin K.V., Klyushnikov V.A., Anosov M.S. Monitoring ustalostnogo razrusheniya silovogo elementa konstruktsii vikhretokovym i akusticheskimi metodami // Vestnik nauchno-tekhnicheskogo razvitiya. 2021. № 162. P. 46—54.
- Rigmant M.B. Metody i sredstva kontrolya fazovogo sostava dvukh- i tryokhfaznykh austenitnykh stalei // Defectoskopiya. 2018. № 2. P. 27—40.
补充文件
