To evaluate the impact of watching a video sequence in a virtual reality helmet and on a TV screen on a person’s postural stability

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents an analysis of changes in postural stability when a person is presented with a video sequence in a virtual reality helmet and from a TV screen. Postural stability was assessed using a computer stabilometer complex. Changes in the stabilometric indicators compared with control tests (before viewing) were shown for both cases (watching videos on the screen and in a virtual reality helmet). Besides, viewing a video sequence in a virtual reality helmet had a greater impact on the instability. While watching a video from a TV screen and in a virtual reality helmet, the contribution of visual information to maintaining balance in the sagittal plane decreased. However, while watching from the TV screen, the contribution of vestibular information for posture control increased. When viewed with virtual reality helmet, the contribution of somatosensory information and the cerebellum increased. The results may suggest that virtual reality requires more conscious corrective mechanisms to stabilize posture.

Full Text

Restricted Access

About the authors

L. М. Bikchentaeva

Institute of Fundamental Biology and Medicine of KFU

Email: ani_07@mail.ru
Russian Federation, Kazan

A. A. Shulman

Institute of Fundamental Biology and Medicine of KFU

Author for correspondence.
Email: ani_07@mail.ru
Russian Federation, Kazan

М. E. Baltin

Institute of Fundamental Biology and Medicine of KFU; Volga Region State University of Physical Culture, Sports and Tourism

Email: ani_07@mail.ru
Russian Federation, Kazan; Kazan

S. O. Bikeeva

Institute of Fundamental Biology and Medicine of KFU

Email: ani_07@mail.ru
Russian Federation, Kazan

A. F. Zheltukhina

Institute of Fundamental Biology and Medicine of KFU

Email: ani_07@mail.ru
Russian Federation, Kazan

T. V. Baltina

Institute of Fundamental Biology and Medicine of KFU

Email: ani_07@mail.ru
Russian Federation, Kazan

References

  1. Kari T., Kosa M. Acceptance and use of virtual reality games: an extension of HMSAM // Virtual Reality. 2023. V. 27. P. 1585.
  2. Chang E., Kim H., Yoo B. Virtual reality sickness: A review of causes and measurements // Int. J. Hum. Comput. Interact. 2020. V. 36. № 17. P. 1658.
  3. Tao G., Garrett B., Taverner T. et al. Immersive virtual reality health games: A narrative review of game design // J. Neuroeng. Rehabil. 2021. V. 18. № 1. P. 31.
  4. Zeng N., Pope Z., Lee J., Gao Z. Virtual reality exercise for anxiety and depression: A preliminary review of current research in an emerging field // J. Clin. Med. 2018. V. 7. № 3. P. 42.
  5. Aygün C., Çakir-Atabek H. Alternative model for physical activity: Active video games lead to high physiological responses // Res. Q. Exerc. Sport. 2022. V. 93. № 3. P. 447.
  6. Sápi M., Domján A., Fehérné Kiss A., Pintér S. Is Kinect training superior to conventional balance training for healthy older adults to improve postural control? // Games Health J. 2018. V. 8. № 1. P. 41.
  7. Bacha J.M.R., Gomes G.C.V., de Freitas T.B. et al. Effects of Kinect adventures games versus conventional physical therapy on postural control in elderly people: A randomized controlled trial // Games Health J. 2017. V. 7. № 1. P. 24.
  8. Doré B., Gaudreault A., Everard G. et al. Acceptability, feasibility, and effectiveness of immersive virtual technologies to promote exercise in older adults: A systematic review and meta-analysis // Sensors (Basel). 2023. V. 23. № 5. P. 2506.
  9. Lyu K., Globa A., Brambilla A., de Dear R. An immersive multisensory virtual reality approach to the study of human-built environment interactions: Technical workflows // MethodsX. 2023. V. 11. P. 102279.
  10. Garrett B., Taverner T., Gromala D. et al. Virtual reality clinical research promises and challenges // JMIR Serious Games. 2018. V. 6. № 4. P. e10839.
  11. Borrego A., Latorre J., Alcañiz M., Llorens R. Embodiment and presence in virtual reality after stroke. A comparative study with healthy subjects // Front. Neurol. 2019. V. 10. P 1061.
  12. Tossavainen T., Juhola M., Pyykkö I. et al. Development of virtual reality stimuli for force platform posturography // Int. J. Med. Inform. 2003. V. 70. № 2–3. P. 277.
  13. Luo H., Wang X., Fan M. et al. The effect of visual stimuli on stability and complexity of postural control // Front. Neurol. 2018. V. 9. P. 48.
  14. Oh H., Lee G. Feasibility of full immersive virtual reality video game on balance and cybersickness of healthy adolescents // Neurosci. Lett. 2021. V. 760. P. 136063.
  15. Chang E., Kim H.T., Yoo B. Virtual reality sickness: A review of causes and measurements // Int. J. Hum. Comput. Interact. 2020. V. 36. № 17. P. 1658.
  16. Pettijohn K.A., Geyer D., Gomez J. et al. Postural instability and simulator seasickness // Aerosp. Med. Hum. Perform. 2018. V. 89. № 7. P. 634.
  17. Bos J.E., Bles W., Groen E.L. A theory on visually induced motion sickness // Displays. 2008. V. 29. P. 47.
  18. Nooij S.A.E., Pretto P., Oberfeld D. et al. Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories // PLoS One. 2017. V. 12. № 4. P. e0175305.
  19. Palmisano S., Allison R.S., Schira M.M. Future challenges for vection research: definitions, functional significance, measures, and neural bases // Front. Psychol. 2015. V. 6. P. 193.
  20. Widdowson C., Becerra I., Merrill C. et al. Assessing postural instability and cybersickness through linear and angular displacement // Hum. Factors. 2021. V. 63. № 2. P. 296.
  21. Dennison M.S., Wisti A.Z., D’Zmura M. Use of physiological signals to predict cybersickness // Displays. 2016. V. 44. P. 42.
  22. Usachev V.I., Sliva S.S., Belyaev V.E. et al. [Novaya metodologiya obrabotki stabilometricheskoi informatsii i problemi shirokogo vnedreniya yee v praktiku] // Izvestiya TRTU. 2006. V. 11. P. 138.
  23. Dotsenko V.I., Usachev V.I., Morozova S.V., Skedina M.A. Modern algorithms of postural disturbances in clinical practice // Meditsinskiy Sovet – Medical Council. 2017. V. 8. P. 116.
  24. Błaszczyk J.W., Beck M. Posturographic standards for optimal control of human standing posture // J. Hum. Kinet. 2023. V. 86. P. 7.
  25. Lin I.S., Lai D.M., Ding J.J. et al. Reweighting of the sensory inputs for postural control in patients with cervical spondylotic myelopathy after surgery // J. Neuroeng. Rehabil. 2019. V. 16. № 1. P. 96.
  26. Dakinova M.V., Bikchentaeva L.M., Tagirova I.S. et al. Spectral analysis of stabilographic signals by Fourier and Hilbert–Huang methods / VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, 23-27 May, 2022 // IEEE Xplore. doi: 10.1109/ITNT55410.2022. 9848704
  27. Wodarski P. Trend change analysis as a new tool to complement the evaluation of human body balance in the time and frequency domains // J. Hum. Kinet. 2023. V. 87. P. 51.
  28. Andreeva I.G., Gvozdeva A.P., Bobrova E.V. [Postural responses on moving sound images depending on the dominant sensory modality in case of spatial orientation] // Ross. Fiziol. Zh. Im. I.M. Sechenov. 2019. V. 105. № 2. P. 178.
  29. Kozhina G.V., Levik Yu.S., Popov A.K., Smetanin B.N. Maintaining an upright posture with different sizes of the object providing visual feedback on rigid and compliant supports // Human Physiology. 2022. V. 48. № 1. P. 1.
  30. Mergner T., Schweigart G., Maurer C., Blumle A. Human postural responses to motion of real and virtual visual environments under different support base conditions // Exp. Brain Res. 2005. V. 167. № 4. P. 535.
  31. Reed-Jones R.J., Vallis L.A., Reed-Jones J.G., Trick L.M. The relationship between postural stability and virtual environment adaptation // Neurosci. Lett. 2008. V. 435. № 3. P. 204.
  32. Nishiike S., Okazaki S., Watanabe H. et al. The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans // J. Med. Invest. 2013. V. 60. № 3–4. P. 236.
  33. Michnik R., Jurkojć J., Wodarski P. et al. The influence of the scenery and the amplitude of visual disturbances in the virtual reality on the maintaining the balance // Arch. Budo. 2014. V. 10. P. 133.
  34. Robert M.T., Ballaz L., Lemay M. The effect of viewing a virtual environment through a head-mounted display on balance // Gait Posture. 2016. V. 48. P. 261.
  35. Chiarovano E., de Waele C., MacDougall H.G. et al. Maintaining balance when looking at a virtual reality three-dimensional display of a field of moving dots or at a virtual reality scene // Front. Neurol. 2015. V. 6. P. 164.
  36. Xu W., Liang H.N., Yu. Y. et al. Assessing the effects of a full-body motion-based exergame in virtual reality / Proceedings of the Seventh International Symposium of Chinese CHI. Association for Computing Machinery, Xiamen, China, June 2019. doi: 10.1145/3332169.3333574
  37. Urabe Y., Kazuki F., Keita H. et al. The application of balance exercise using virtual reality for rehabilitation // Healthcare. 2002. V. 10. № 4. P. 680.
  38. da Silva Marinho A., Terton U., Jones C. Cybersickness and postural stability of first time VR users playing VR videogames // Appl. Ergon. V. 101. P. 103698.
  39. Cieślik B., Szczepańska-Gieracha J., Serweta-Pawlik A., Klajs K. Virtual therapeutic garden: A promising method supporting the treatment of depressive symptoms in late-life: A randomized pilot study // J. Clin. Med. 2021. V. 10. № 9. P. 1942.
  40. Raymakers J.A., Samson M.M., Verhaar H.J. The assessment of body sway and the choice of the stability parameter(s) // Gait Posture. 2005. V. 21. № 1. P. 48.
  41. Piirtola M., Era P. Force platform measurements as predictors of falls among older people – a review // Gerontology. 2006. V. 52. № 1. P. 1.
  42. Quijoux F., Nicolaï A., Chairi I. et al. A review of center of pressure (COP) variables to quantify standing balance in elderly people: Algorithms and open‐access code // Physiol. Rep. 2021. V. 9. P. 22. P. e15067.
  43. Warnica M.J., Weaver T.B., Prentice S.D., Laing A.C. The influence of ankle muscle activation on postural sway during quiet stance // Gait Posture. 2014. V. 39. № 4. P. 1115.
  44. Zhang Y., Kiemel T., Jeka J. The influence of sensory information on two-component coordination during quiet stance // Gait Posture. 2007. V. 26. № 2. P. 263.
  45. Chagdes J.R., Rietdyk S., Haddad J.M. et al. Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis // Exp. Brain Res. 2009. V. 197. № 3. P. 297.
  46. Hwang S., Agada P., Kiemel T., Jeka J.J. Dynamic reweighting of three modalities for sensor fusion // PLoS One. 2014. V. 31. № 9. P. e88132.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Shift of the center of pressure (CP) in the frontal plane, CP (x), and the sagittal plane, CP (y). White bars – parameter values ​​before, during, and after watching a video in a virtual reality (VR) helmet: gray bars – parameter values ​​before, during, and after watching a video on a TV screen; data are presented as the mean, error bars – standard deviation. * – p ≤ 0.05, reliability of differences.

Download (170KB)
3. Fig. 2. The area of ​​the statokinesiogram of the participants (ELLS) and the average linear velocity of the CP displacement (LSC) before, during and after watching the video sequence. Shaded columns – when watching the video on a television screen (TV); white columns – when watching the video in a virtual reality helmet (VR); data are presented as a median, the spread in the groups is presented as an interquartile range, whiskers are the minimum and maximum values, a point inside the box is the mean value, a point outside the box is an outlier; * – p ≤ 0.05, reliability of differences.

Download (170KB)
4. Fig. 3. Standard deviation of the CP displacement in the frontal (Qx) and sagittal (Qy) planes. See Fig. 2 for other designations.

Download (170KB)
5. Fig. 4. The quality of the balance function (QBF) of the subjects before, during and after viewing the video sequence. * – p ≤ 0.05, reliability of differences. Other designations see Fig. 2.

Download (90KB)

Copyright (c) 2024 Russian Academy of Sciences