MethylSulfate Complex (Bu4N)2[Мo6I8(O3SOCH3)6]: Synthesis, Structure, Lability of Ligands, and Phosphorescence

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New methylsulfate complex (Bu4N)2[Мо6I8(O3SOCH3)6] (I) is synthesized by the reaction of (Bu4N)2[Mo6I8(C≡C–C(O)OCH3)6] with dimethyl sulfate (CH3)2SO4. According to the XRD data, the molybdenum atoms are coordinated by the monodentate methylsulfate ligands. In a DMSO solution, the complex undergoes solvolysis accompanied by the complete substitution of the methylsulfate ligands by the solvent molecules. A powder sample of cluster I luminesces (phosphorescence) with the emission maximum at a wavelength of 620 nm (77 K). Increasing temperature to 300 K results in the shift of the emission maximum to 650 nm and a decrease in the integral intensity by 1.6 times.

Full Text

Restricted Access

About the authors

M. A. Mikhaylov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Author for correspondence.
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk

T. S. Sukhikh

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk

D. G. Sheven

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk

A. S. Berezin

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk

M. N. Sokolov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University

Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk

N. B. Kompankov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences

Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk

References

  1. Mikhaylov M.A., Sokolov M.N. // Eur. J. Inorg. Chem. 2019. V. 2019. № 39–40. P. 4181.
  2. Zietlow T.C., Nocera D.G., Gray H.B. // Inorg. Chem. 1986. V. 25. № 9. P. 1351.
  3. Hummel T., Ströbele M., Schmid D. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. № 31. P. 4938-5076. https://doi.org/10.1002/ejic.201600926
  4. Fuhrmann A.D., Seyboldt A., Schank A. et. al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 37. P. 4259.
  5. Riehl L., Seyboldt A., Ströbele M. et al. // Dalton Trans. 2016. V. 45. P. 15500.
  6. Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. V. 500. P. 215543. https://doi.org/10.1016/j.ccr.2023.215543.
  7. Efremova O.A., Vorotnikov Y.A., Brylev K.A. et al. // Dalton Trans. 2016. V. 39. P. 15427.
  8. Mironova A.D., Mikhajlov M.A., Sukhikh T.S. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 18–19. P. 1135.
  9. Kirakci K., Demel J., Hynek J. et al. // Inorg. Chem. 2019. V. 58. P. 16546.
  10. Vorotnikova N.A., Alekseev A.Y., Vorotnikov Y.A. et al. // Mater. Sci. Eng. C. 2019. V. 105. P. 110.
  11. Mikhailov M.A., Brylev K.A., Abramov P.A. et al. // Inorg. Chem. 2016. V. 55. P. 8437.
  12. Svezhentseva E.V., Solovieva A.O., Vorotnikov Y.A. et al. // New J. Chem. 2017. V. 41. P. 1670.
  13. Stewart R. The Proton: Applications to Organic Chemistry. Elsevier, 1985. V. 46. P. 9. https://doi.org/10.1016/B978-0-12-670370-2.50006-2
  14. Schmeisser M., Heinemann F.W., Illner P. et al. // Inorg. Chem. 2011. V. 50. P. 6685.
  15. Blösl S., Schwarz W., Schmidt A. // Z. Anorg. Allg. Chem. 1982. V. 495. P. 177.
  16. Seebacher J., Mian J., Vahrenkamp H. // Eur. J. Inorg. Chem. 2004. V. 2004. P. 409.
  17. Li Y., Lu J., Cui X.B. et al. // Pol. J. Chem. 2004. V. 78. № 6. P. 779.
  18. Belokon´ Y.N., Clegg W., Harrington R.W. et al. // Inorg. Chem. 2008. V. 47. P. 3801.
  19. Song L. Iyoda T. // J. Inorg. Organomet. Polym. Mater. 2009. V. 19. P. 124.
  20. Wu J.Y., Zhong M.-S., Chiang M.-H. et al. // Chem. Eur. J. 2016. V. 22. P. 7238.
  21. Orysyk S.I., Bon V.V., Pekhnyo V.I. et al. // Polyhedron. 2012. V. 38. P. 15.
  22. Vimala T.M., Swaminathan S. // Curr. Sci. 1969. V. 38. P. 362.
  23. Chifotides H.T., Hess J.S., Angeles-Boza A.M. et al. // Dalton Trans. 2003. P. 4426.
  24. Blake A.J., Hubberstey P., Suksangpanya U., Wilson C.L. // Dalton Trans. 2000. P. 3873. https://doi.org/10.1039/B003427O
  25. Sokolov M.N., Mikhailov M.A., Brylev K.A. et al. // Inorg. Chem. 2013. V. 52. P. 12477.
  26. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  27. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  28. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  29. Soto E., Helmink K.L., Chin C.P. // Organometallics. 2022. V. 41. P. 2688.
  30. Mikhailov M.A., Gushchin A.L., Gallyamov M.R. et al. // Russ. J. Coord. Chem. 2017. V. 43. P. 172. https://doi.org/10.1134/S107032841702004X
  31. Sokolov M.N., Mikhailov M.A., Abramov P.A., and Fedin V.P., J. Struct. Chem., 2012, vol. 53, no. 1, p. 200.
  32. Bruckner P., Preetz W., Punjer M. // Z. Anorg. Allg. Chem. 1997. V. 623. P. 8.
  33. Kirakci K., Cordier S., Roisnel T. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 116.
  34. Pronina E.V., Pozmogova T.N., Vorotnikov Y.A. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 111. https://doi.org/10.1007/s00775-021-01914-3
  35. Mikhailov, M.A., Berezin, A.S., Sukhikh, T.S., et al., J. Struct. Chem., 2021, vol. 62, no. 12, p. 1896.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Fragment of the crystal structure of cluster complex I, hydrogen atoms are not shown) (a); fragment of cluster anion I, the crystallographically equivalent atoms Mo, I, O are indicated in brackets, the upper index above the brackets denotes the corresponding centrally symmetric atom (b)

Download (267KB)
3. Fig. 2. Found and calculated isotopic distributions in the negative m/z region corresponding to [Mo6I8(O3SOCH3)6]2- and {(Bu4N)[Mo6I8(O3SOCH3)6]}-

Download (253KB)
4. Fig. 3. PMR spectra of I in DMSO-d6 at different temperatures. Chemical shifts of signals from protons of Bu4N+ cations and DMSO (2.5 m.d.) are marked by rectangles; the red oval inside the rectangle is from methyl protons of methanol molecules; the orange oval is from protons of free methyl sulfate anions; the red oval is from protons of coordinated methyl sulfate anions; the migrating (in the range 3. 31-3.74 m.d.) broadened signal marked with a red dot is attributed to protons of H2O

Download (282KB)
5. Fig. 4. Temperature dependence of luminescence of powder sample I at excitation λex = 440 nm

Download (151KB)
6. Fig. 5. Temperature dependence of the excitation spectrum of cluster complex I powder with luminescence maximum at λem = 620 nm

Download (196KB)
7. Fig. 6. Temperature dependence of luminescence intensity I at excitation λex = 440 nm

Download (86KB)

Copyright (c) 2024 Российская академия наук