MethylSulfate Complex (Bu4N)2[Мo6I8(O3SOCH3)6]: Synthesis, Structure, Lability of Ligands, and Phosphorescence
- Authors: Mikhaylov M.A.1, Sukhikh T.S.1, Sheven D.G.1, Berezin A.S.1, Sokolov M.N.1,2, Kompankov N.B.1
-
Affiliations:
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 50, No 8 (2024)
- Pages: 510-519
- Section: Articles
- URL: https://journals.eco-vector.com/0132-344X/article/view/667583
- DOI: https://doi.org/10.31857/S0132344X24080057
- EDN: https://elibrary.ru/MQZBSP
- ID: 667583
Cite item
Abstract
New methylsulfate complex (Bu4N)2[Мо6I8(O3SOCH3)6] (I) is synthesized by the reaction of (Bu4N)2[Mo6I8(C≡C–C(O)OCH3)6] with dimethyl sulfate (CH3)2SO4. According to the XRD data, the molybdenum atoms are coordinated by the monodentate methylsulfate ligands. In a DMSO solution, the complex undergoes solvolysis accompanied by the complete substitution of the methylsulfate ligands by the solvent molecules. A powder sample of cluster I luminesces (phosphorescence) with the emission maximum at a wavelength of 620 nm (77 K). Increasing temperature to 300 K results in the shift of the emission maximum to 650 nm and a decrease in the integral intensity by 1.6 times.
Full Text

About the authors
M. A. Mikhaylov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk
T. S. Sukhikh
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk
D. G. Sheven
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk
A. S. Berezin
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk
M. N. Sokolov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk
N. B. Kompankov
Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences
Email: mikhajlovmaks@yandex.ru
Russian Federation, Novosibirsk
References
- Mikhaylov M.A., Sokolov M.N. // Eur. J. Inorg. Chem. 2019. V. 2019. № 39–40. P. 4181.
- Zietlow T.C., Nocera D.G., Gray H.B. // Inorg. Chem. 1986. V. 25. № 9. P. 1351.
- Hummel T., Ströbele M., Schmid D. et al. // Eur. J. Inorg. Chem. 2016. V. 2016. № 31. P. 4938-5076. https://doi.org/10.1002/ejic.201600926
- Fuhrmann A.D., Seyboldt A., Schank A. et. al. // Eur. J. Inorg. Chem. 2017. V. 2017. № 37. P. 4259.
- Riehl L., Seyboldt A., Ströbele M. et al. // Dalton Trans. 2016. V. 45. P. 15500.
- Vorotnikova N.A., Vorotnikov Y.A., Shestopalov M.A. // Coord. Chem. Rev. 2024. V. 500. P. 215543. https://doi.org/10.1016/j.ccr.2023.215543.
- Efremova O.A., Vorotnikov Y.A., Brylev K.A. et al. // Dalton Trans. 2016. V. 39. P. 15427.
- Mironova A.D., Mikhajlov M.A., Sukhikh T.S. et al. // Z. Anorg. Allg. Chem. 2019. V. 645. № 18–19. P. 1135.
- Kirakci K., Demel J., Hynek J. et al. // Inorg. Chem. 2019. V. 58. P. 16546.
- Vorotnikova N.A., Alekseev A.Y., Vorotnikov Y.A. et al. // Mater. Sci. Eng. C. 2019. V. 105. P. 110.
- Mikhailov M.A., Brylev K.A., Abramov P.A. et al. // Inorg. Chem. 2016. V. 55. P. 8437.
- Svezhentseva E.V., Solovieva A.O., Vorotnikov Y.A. et al. // New J. Chem. 2017. V. 41. P. 1670.
- Stewart R. The Proton: Applications to Organic Chemistry. Elsevier, 1985. V. 46. P. 9. https://doi.org/10.1016/B978-0-12-670370-2.50006-2
- Schmeisser M., Heinemann F.W., Illner P. et al. // Inorg. Chem. 2011. V. 50. P. 6685.
- Blösl S., Schwarz W., Schmidt A. // Z. Anorg. Allg. Chem. 1982. V. 495. P. 177.
- Seebacher J., Mian J., Vahrenkamp H. // Eur. J. Inorg. Chem. 2004. V. 2004. P. 409.
- Li Y., Lu J., Cui X.B. et al. // Pol. J. Chem. 2004. V. 78. № 6. P. 779.
- Belokon´ Y.N., Clegg W., Harrington R.W. et al. // Inorg. Chem. 2008. V. 47. P. 3801.
- Song L. Iyoda T. // J. Inorg. Organomet. Polym. Mater. 2009. V. 19. P. 124.
- Wu J.Y., Zhong M.-S., Chiang M.-H. et al. // Chem. Eur. J. 2016. V. 22. P. 7238.
- Orysyk S.I., Bon V.V., Pekhnyo V.I. et al. // Polyhedron. 2012. V. 38. P. 15.
- Vimala T.M., Swaminathan S. // Curr. Sci. 1969. V. 38. P. 362.
- Chifotides H.T., Hess J.S., Angeles-Boza A.M. et al. // Dalton Trans. 2003. P. 4426.
- Blake A.J., Hubberstey P., Suksangpanya U., Wilson C.L. // Dalton Trans. 2000. P. 3873. https://doi.org/10.1039/B003427O
- Sokolov M.N., Mikhailov M.A., Brylev K.A. et al. // Inorg. Chem. 2013. V. 52. P. 12477.
- Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
- Soto E., Helmink K.L., Chin C.P. // Organometallics. 2022. V. 41. P. 2688.
- Mikhailov M.A., Gushchin A.L., Gallyamov M.R. et al. // Russ. J. Coord. Chem. 2017. V. 43. P. 172. https://doi.org/10.1134/S107032841702004X
- Sokolov M.N., Mikhailov M.A., Abramov P.A., and Fedin V.P., J. Struct. Chem., 2012, vol. 53, no. 1, p. 200.
- Bruckner P., Preetz W., Punjer M. // Z. Anorg. Allg. Chem. 1997. V. 623. P. 8.
- Kirakci K., Cordier S., Roisnel T. et al. // Z. Kristallogr. NCS. 2005. V. 220. P. 116.
- Pronina E.V., Pozmogova T.N., Vorotnikov Y.A. et al. // J. Biol. Inorg. Chem. 2022. V. 27. P. 111. https://doi.org/10.1007/s00775-021-01914-3
- Mikhailov, M.A., Berezin, A.S., Sukhikh, T.S., et al., J. Struct. Chem., 2021, vol. 62, no. 12, p. 1896.
Supplementary files
