3D coordination polymers with N-heterocyclic Ga(I) moieties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The reactions of bimetallic acenaphthene-1,2-diimine complex [(Dpp-bian-GaCr(CO)5]2- [Na(Thf)2]2 (I) (Dpp-bian = 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene) with 4,4ʹ-bipyridine (4,4ʹ-Bipy) and 1,3-bis(4-pyridyl)propane (Bpp) in THF gave 3D coordination polymers [{(Dppbian) GaCr(CO)5}{Na(4,4ʹ-Bipy)3}]n (II) and [(Dpp-bian)GaCr(CO)4Na(Et2O)(Bpp)1,5]n (III), respectively. Compounds II and III were characterized by elemental analysis and NMR and IR spectroscopy. The molecular structure of II was established by X-ray diffraction (CCDC no. 2278024).

Full Text

Restricted Access

About the authors

Т. S. Koptseva

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod

E. V. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod

I. L. Fedushkin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: igorfed@iomc.ras.ru
Russian Federation, Nizhny Novgorod

References

  1. Hadlington T.J., Driess M., Jones C. // Chem. Soc. Rev. 2018. V. 47. P. 4176.
  2. Chu T., Nikonov G.I. // Chem. Rev. 2018. V. 118. P. 3608.
  3. Zhong M., Sinhababu S., Roesky H.W. // Dalton Trans. 2020. V. 49. P. 1351.
  4. Hardman N.J., Eichler B.E., Power Ph.P. // Chem. Commun. 2000. № 20. P. 1991.
  5. Jin G., Jones C., Junk P.C., Stasch A. et al. // New J. Chem. 2008. V. 32. P. 835.
  6. Overgaard J., Jones C., Dange D., Platts J.A. // Inorg. Chem. 2011. V. 50. P. 8418.
  7. Jones C., Junk P.C., Platts J.A., Stasch A. // J. Am. Chem. Soc. 2006. V. 128. № 7. P. 2206.
  8. Schmidt E.S., Jockisch A., Schmidbaur H. // J. Am. Chem. Soc. 1999. V. 121. № 41. P. 9758.
  9. Schmidt E.S., Schier A., Schmidbaur H. // Dalton Trans. 2001. № 5. P. 505.
  10. Baker R.J., Farley R.D., Jones C. et al. // Dalton Trans. 2002. № 20. P. 3844.
  11. Dange D., Choong S.L., Schenk Ch. et al. // Dalton Trans. 2012. V. 41. P. 9304.
  12. Morris L.J., Rajeshkumar T., Maron L., Okuda J. // Chem. Eur. J. 2022. V. 28. № 56. P. e202201480.
  13. Seifert A., Scheid D., Linti G., Zessin T. // Chem. Eur. J. 2009. V. 15. № 44. P. 12114.
  14. Jones C., Mills D.P., Rose R.P. // J. Organomet. Chem. V. 691. № 13. P. 3060.
  15. Kassymbek A., Britten J. F., Spasyuk D. et al. // Inorg. Chem. 2019. V. 58. № 13. P. 8665.
  16. Kassymbek A., Vyboishchikov S.F., Gabidullin B.M. et al. // Angew. Chem. Int. Ed. 2019. V. 58. P. 18102.
  17. Baker R.J., Jones C., Platts J.A. // Dalton Trans. 2003. № 19. P. 3673.
  18. Baker R.J., Jones C., Platts J.A. // J. Am. Chem. Soc. 2003. V. 125. № 35. P. 10534.
  19. Aldridge S., Baker R.J., Coombs N.D. et al. // Dalton Trans. 2006. № 27. P. 3313.
  20. Jones C., Mills D.P., Rose R.P. et al. // J. Organomet. Chem. V. 695. № 22. P. 2410.
  21. Fedushkin I.L., Sokolov V.G., Piskunov A.V. et al. // Chem. Commun. 2014. V. 50. P. 10108.
  22. Fedushkin I.L., Sokolov V.G., Makarov V.M. et al. // Russ. Chem. Bull. V. 65. № 6. P. 1495.
  23. Sokolov V.G., Skatova A.A., Piskunov A.V. et al. // Russ. Chem. Bull. V. 69. № 8. P. 1537.
  24. Dodonov V.A., Sokolov V.G., Baranov E.V. et al. // Inorg. Chem. 2022. V. 61. № 38. P. 14962.
  25. Zhang R., Wang Y., Zhao Y. et al. // Dalton Trans. 2021. V. 50. № 39. P. 13634.
  26. Koptseva T.S., Sokolov V.G., Ketkov S.Yu. et al. // Chem. Eur. J. 2021. V. 27. № 18. P. 5745.
  27. Sokolov V.G., Koptseva T.S., Rumyantcev R.V. et al. // Organometallics. 2020. V. 39. № 1. P. 66.
  28. Koptseva T.S., Bazyakina N.L., Baranov E.V., Fedushkin I.L. // Mendeleev Commun. 2023. V. 33. P. 167.
  29. Koptseva T.S., Moskalev M.V., Baranov E.V., Fedushkin I.L. // Organometallics. 2023. V. 42. P. 965.
  30. Koptseva T.S., Bazyakina N.L., Moskalev M.V. et al. // Eur. J. Inorg. Chem. 2021. № 7. P. 675.
  31. Koptseva T.S., Bazyakina N.L., Rumyantcev R.V., Fedushkin I.L. // Mendeleev Commun. 2022. V. 32. P. 780.
  32. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.42.76а — Software Package, Rigaku OD, 2022.
  33. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  34. Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite; Madison (WI, USA): Bruker AXS, 2003.
  35. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  36. SCALE3 ABSPACK: Empirical Аbsorption Сorrection, CrysAlisPro 1.171.42.76а — Software Package, Rigaku OD, 2022.
  37. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576.
  38. Spek A.L. // Acta Cryst. 2009. V. 65. P. 148.
  39. Macrae C.F., Sovago I., Cottrell S.J. et al. // J. Appl. Cryst. 2020. V. 53. P. 226.
  40. Sikma R.E., Balto K.P., Figueroa J.S., Cohen S.M. // Angew. Chem. Int. Ed. 2022. V. 61. Art e202206353.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1.

Download (156KB)
3. Scheme 2.

Download (197KB)
4. Fig. 1. 1H NMR spectrum of compound II (400 MHz, C4D8O, 298 K).

Download (118KB)
5. Fig. 2. Thermogravimetric analysis II.

Download (77KB)
6. Fig. 3. Fragments of crystal packing II: along the crystallographic axis b (a); general view (b). Thermal ellipsoids of atoms of the anionic Ga—Cr complexes are shown with 30% probability. Hydrogen atoms, Ar substituents, and solvate molecules of toluene with THF are not shown. The index A denotes symmetrically equivalent atoms.

Download (548KB)
7. Fig. 4. Superposition of two independent molecules of the ionic complex (Dpp-bian)GaCr(CO)5 in II. Thermal ellipsoids with 30% probability are shown. Hydrogen atoms are not shown. The numbering for the first and second molecules of (Dpp-bian)GaCr(CO)5 (with green and brown bonds), respectively, is given through the symbol “|”.

Download (182KB)
8. Fig. 5. Visualization of voids in crystal II using the Mercury program [39].

Download (183KB)
9. Rice. 6. 1H NMR spectrum of compound III (400 MHz, C4D8O, 298 K).

Download (133KB)
10. Rice. 7. Thermogravimetric analysis III.

Download (79KB)
11. Fig. 8. Asymmetric part of the 3D structure III (a) and fragments of the crystal packing of III in projection onto the plane b0c (b) and a0c (c). The index A denotes symmetrically equivalent atoms.

Download (636KB)
12. Fig. 9. Visualization of voids in crystal III using the Mercury program [39].

Download (271KB)

Copyright (c) 2024 Российская академия наук