Coordination Polymers of Lithium Based on 1,2-Bis[(2,6-diisopropyl-4-diethylmalonophenyl)imino]acenaphthene

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

1,2-Bis[(2,6-diisopropyl-4-diethylmalonophenyl)imino]acenaphthene (Dem-Bian) with zinc chloride forms complex [(Dem-Bian)ZnCl2] (I). The reaction of complex I with n-BuLi proceeds with the deprotonation of the malonate fragments and gives 1D coordination polymer [ZnCl2(Dem-Bian)Li(DME)2]n (II). The reaction of [(Dem-Bian)CuCl] with n-BuLi affords 1D polymer [(Dem-Bian)Li2(DME)2]n (III). Compounds I–III are characterized by elemental analysis and IR spectroscopy. Derivatives I and II are characterized by 1Н NMR spectroscopy. The crystal structures of compounds II and III are determined by X-ray diffraction (XRD). Their thermal stability is studied by thermogravimetric analysis.

Sobre autores

N. Bazyakina

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: igorfed@iomc.ras.ru
Россия, Нижний Новгород

V. Sokolov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: igorfed@iomc.ras.ru
Россия, Нижний Новгород

M. Moskalev

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: igorfed@iomc.ras.ru
Россия, Нижний Новгород

E. Baranov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Email: igorfed@iomc.ras.ru
Россия, Нижний Новгород

I. Fedushkin

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia

Autor responsável pela correspondência
Email: igorfed@iomc.ras.ru
Россия, Нижний Новгород

Bibliografia

  1. Bernauer J., Pölker J., von Wangelin A.J. // Chem. Cat. Chem. 2022. V. 14. № 1. Art. e202101182.
  2. Marreiros J., Diaz-Couce M., Ferreira M.J. et al. // Inorg. Chim. Acta. 2019. V. 486. P. 274.
  3. Beltrani M., Carfagna C., Milani B. et al. // Adv. Synth. Catal. 2016. V. 358. № 20. P. 3244.
  4. Москалев М.В., Скатова А.А., Чудакова В.А. и др. // Изв. АН. Сер. хим. 2015. № 12. С. 2830 (Moskalev M.V., Skatova A.A., Chudakova V.A. et al. // Russ. Chem. Bull. 2015. V. 64. № 12. P. 2830).
  5. Moskalev M.V., Yakub A.M., Morozov A.G. et al. // Eur. J. Org. Chem. 2015. V. 2015. № 26. P. 5781.
  6. Rumble S.L., Page M.J., Field L.D. et al. // Eur. J. Inorg. Chem. 2012. V. 2012. № 13. P. 2226.
  7. Li L., Lopes P.S., Rosa V. et al. // Dalton Trans. 2012. V. 41. № 17. P. 5144.
  8. Fedushkin I.L., Moskalev M.V., Lukoyanov A.N. et al. // Chem. Eur. J. 2012. V. 18. № 36. P. 11264.
  9. Fedushkin I.L., Nikipelov A.S., Morozov A.G. et al. // Chem. Eur. J. 2012. V. 18. № 1. P. 255.
  10. Viganò M., Ragaini F., Buonomenna M.G. et al. // ChemCatChem. 2010. V. 2. № 9. P. 1150.
  11. Alonso J.C., Neves P., Pires da Silva M.J. et al. // Organometallics. 2007. V. 26. № 23. P. 5548.
  12. Gottumukkala A.L., Teichert J.F., Heijnen D. et al. // J. Org. Chem. 2011. V. 76. № 9. P. 3498.
  13. de Fremont P., Clavier H., Rosa V. et al. // Organometallics. 2011. V. 30. № 8. P. 2241.
  14. Yu X., Zhu F., Bu D. et al. // RSC Adv. 2017. V. 7. № 25. P. 15321.
  15. Sandl S., Maier T.M., van Leest N.P. et al. // ACS Catal. 2019. V. 9. № 8. P. 7596.
  16. Soshnikov I.E., Bryliakov K.P., Antonov A.A. et al. // Dalton Trans. 2019. V. 48. № 23. P. 7974.
  17. Wang F., Tanaka R., Li Q. et al. // Organometallics. 2018. V. 37. № 9. P. 1358.
  18. Liu Z.W.Q., Solan G.A., Sun W.-H. // Coord. Chem. Rev. 2017. V. 350. P. 68.
  19. Guo L., Liu W., Chen C. // Mater. Chem. Front. 2017. V. 1. № 12. P. 2487.
  20. Small B.L., Rios R., Fernandez E.R. et al. // Organometallics. 2010. V. 29. № 24. P. 6723.
  21. Popeney C.S., Guan Z. // Macromolecules. 2010. V. 43. № 9. P. 4091.
  22. Miyamura Y., Kinbara K., Yamamoto Y. et al. // J. Am. Chem. Soc. 2010. V. 132. № 10. P. 3292.
  23. Romain C., Rosa V., Fliedel C. et al. // Dalton Trans. 2012. V. 41. № 12. P. 3377.
  24. Liu J., Li Y., Li Y. et al. // J. Appl. Pol. Sci. 2008. V. 109. № 2. P. 700.
  25. Wang F., Chen C. // Polym. Chem. 2019. V. 10. № 19. P. 2354.
  26. Brown L.A., Wekesa F.S., Unruh D.K. et al. // J. Pol. Sci. A. 2017. V. 55. № 17. P. 2824.
  27. Kazarina O.V., Gourlaouen C., Karmazin L. et al. // Dalton Trans. 2018. V. 47. № 39. P. 13800.
  28. Mорозов А.Г., Маркелова Е.С. Федюшкин И.Л. и др. // Журн. прикл. химии. 2018. Т. 91. № 6. С. 899 (Мorozov A.G., Markelova E.S., Fedyushkin I.L. et al. // Russ. J. Appl. Chem. 2018. V. 1. № 6. P. 1044).
  29. Fedushkin I.L., Morozov A.G., Chudakova V.A. et al. // Eur. J. Inorg. Chem. 2009. № 33. P. 4995.
  30. Bazyakina N.L., Makarov V.M., Ketkov S.Yu. et al. // Inorg. Chem. 2021. V. 60. P. 3238.
  31. Koptseva T.S., Bazyakina N.L., Moskalev M.V. et al. // Eur. J. Inorg. Chem. 2021. V. 60. P. 3238.
  32. Bazyakina N.L., Moskalev M.V., Cherkasov A.V. et al. // CrystEngComm. 2022. V. 24. P. 2297.
  33. Koptseva T.S., Bazyakina N.L., Rumyantcev R.V. et al. // Mend. Commun. 2022. V. 32. P. 780.
  34. Bazyakina N.L., Makarov V.M., Moskalev M.V. et al. // Mend. Commun. 2022. V. 32. P. 759.
  35. Su J., Yuan S., Li J. et al. // Chem. Eur. J. 2021. V. 27. P. 622.
  36. Bigdeli F., Lollar C.T., Morsali A. et al. // Angew. Chem. Int. Ed. 2020. V. 59. P. 4652.
  37. Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. V. 7. P. 16571.
  38. Su J., Yuan S., Li J. et al. // Chem. Eur. J. 2021. V. 27. P. 622.
  39. Li B., Zhao Y.M., Kirchon A. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 6822.
  40. Соколов В.Г., Москалев М.В., Копцева Т.С. и др. // Изв. АН. Сер. хим. 2020. № 1. С. 125 (Sokolov V.G., Moskalev M.V., Koptseva T.S. et al. // Russ. Chem. Bull. 2021. V. 69. №1. P. 125).
  41. Бажина Е.С., Александров Г.Г., Кискин М.А. и др. // Коорд. химия. 2020. Т. 46. № 2. С. 81 (Bazhina E.S., Aleksandrov G.G., Kiskin M.A. et al. // Russ. J. Coord. Chem. 2020. V. 46. № 2. P. 89). https://doi.org/10.1134/S1070328420020025
  42. Бажина Е.С., Шмелев М.А., Бабешкин К.А. и др. // Изв. АН. Сер. хим. 2021. № 11. С. 2130 (Bazhina E.S., Shmelev M.A., Babeshkin K.A. et al. // Russ. Chem. Bull. 2021. V. 70. № 11. P. 2130).
  43. Блинов Д.О., Зорина-Тихонова Е.Н., Воронина Ю.Л. и др. // Коорд. химия. 2022. Т. 48. № 8. С. 483 (Blinou D.O., Zorina-Tikhonova E.N., Voronina Yu.K. et al. // Russ. J. Coord. Chem. 2022. V. 48. № 8. P. 487). https://doi.org/10.1134/S1070328422080012
  44. APEX3. Bruker Molecular Analysis Research Tool. Version 2018.7-2. Madison (WI, USA): Bruker AXS Inc., 2018.
  45. Data Collection, Reduction and Correction Program. CrysAlisPro 1.171.40.67a – Software Package. Rigaku OD, 2019.
  46. SAINT. Data Reduction and Correction Program. Version 8.38A. Madison (WI, USA): Bruker AXS Inc., 2017.
  47. Krause L., Herbst-Irmer R., Sheldrick G.M., Stalke D. // J. Appl. Cryst. 2015. V. 48. P. 3.
  48. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3.
  49. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3.
  50. Sheldrick G.M. SHELXTL. Version 6.14. Structure Determination Software Suite. Madison (WI, USA): Bruker AXS, 2003.
  51. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Ap-pl. Cryst. 2009. V. 42. P. 339.
  52. Sheldrick G.M. SADABS. Version 2016/2. Bruker/Siemens Area Detector Absorption Correction Program. Madison (WI, USA): Bruker AXS Inc., 2016.
  53. SCALE3 ABSPACK: Empirical Absorption Correction. CrysAlisPro 1.171.40.67a – Software Package. Rigaku OD, 2019.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (32KB)
3.

Baixar (56KB)
4.

Baixar (54KB)
5.

Baixar (313KB)
6.

Baixar (48KB)
7.

Baixar (187KB)
8.

Baixar (628KB)
9.

Baixar (370KB)
10.

Baixar (381KB)

Declaração de direitos autorais © Н.Л. Базякина, В.Г. Соколов, М.В. Москалев, Е.В. Баранов, И.Л. Федюшкин, 2023