Новый стеклокристаллический материал состава Li-эгирина на основе ß-кварцевого твердого раствора и его электрохимические свойства
- Authors: Rusan V.V.1, Alekseeva I.P.1, Dymshits O.S.1, Shemchuk D.V.1, Pashin S.S.1, Agafonov D.V.2, Polyakova L.S.2, Sentcova E.V.2
-
Affiliations:
- Joint Stock Company “Scientific and Production Association of the State Optical Institute named after S.I. Vavilov”
- Saint Petersburg State Technological Institute (Technical University)
- Issue: Vol 51, No 4 (2025)
- Pages: 420-434
- Section: Articles
- URL: https://journals.eco-vector.com/0132-6651/article/view/696664
- DOI: https://doi.org/10.7868/S3034613425040043
- ID: 696664
Cite item
Abstract
Keywords
About the authors
V. V. Rusan
Joint Stock Company “Scientific and Production Association of the State Optical Institute named after S.I. Vavilov”
Email: vvrusan@mail.ru
192171, Russia, St. Petersburg, Babushkina St., 36, building 1
I. P. Alekseeva
Joint Stock Company “Scientific and Production Association of the State Optical Institute named after S.I. Vavilov”192171, Russia, St. Petersburg, Babushkina St., 36, building 1
O. S. Dymshits
Joint Stock Company “Scientific and Production Association of the State Optical Institute named after S.I. Vavilov”192171, Russia, St. Petersburg, Babushkina St., 36, building 1
D. V. Shemchuk
Joint Stock Company “Scientific and Production Association of the State Optical Institute named after S.I. Vavilov”192171, Russia, St. Petersburg, Babushkina St., 36, building 1
S. S. Pashin
Joint Stock Company “Scientific and Production Association of the State Optical Institute named after S.I. Vavilov”192171, Russia, St. Petersburg, Babushkina St., 36, building 1
D. V. Agafonov
Saint Petersburg State Technological Institute (Technical University)190013, Russia, St. Petersburg, Moscow Ave., 24–26/49 letter A
L. S. Polyakova
Saint Petersburg State Technological Institute (Technical University)190013, Russia, St. Petersburg, Moscow Ave., 24–26/49 letter A
E. V. Sentcova
Saint Petersburg State Technological Institute (Technical University)190013, Russia, St. Petersburg, Moscow Ave., 24–26/49 letter A
References
- Reddy M.V., Mauger A., M. Julien C.M., Paolella A., Zaghib K. Brief history of early lithium-battery development // Materials. 2020. V. 13. P. 2–9.
- Nagaura T., Tozawa. K. Lithium ion rechargeable battery // Prog. batteries sol. cells. 1990. V. 9. P. 209–212.
- Li X. Lithium ions batteries electrodes materials, design, outlook and future Perspectives // MATEC Web of Conferences. 2021. V. 353. P. 01022.
- Chen. X., Shen W., Vo T.T., Cao Z., Kapoor A. An overview of lithium-ion batteries for electric vehicles //10-th International Power @ Energy Conference (IPEC). 2012. P. 230–235.
- www.scopus.com
- Manthiram A. A reflection on lithium-ion battery cathode chemistry // Nature Communications. 2020. V. 11. No 1555. P. 1–9.
- Kim H.J., Krishna TNV, Zeb K., Rajangam V., Gopi C.V.V.M., Sambasivam S., Raghavendra K.V.G., Obaidat I.M. A comprehensive review of Li-ion battery materials and their recycling techniques // Electronics. 2020. V. 9. No 1161. P. 1–45.
- Mizushima K., Jones P.C., Wiseman P.J., Goodenough J.B. LixCoO2 (0 < x ≤ l): A new cathode material for batteries of high energy density // Mat. Res. Bull. 1980. V. 15. P. 783–789.
- Thackeray M.M., David W.I.F, Bruce P.G., Goodenough J.B. Lithium Insertion into manganese spinel // Mat. Res. Bull. 1983. V. 18. P. 461–472.
- Thackeray M.M., Johnson P.J., Depicciotto L.A., Bruce, P.G., Goodenough J.B. Electrochemical extraction of lithium from LiMn2O4. // Mater. Res. Bull. 1984. V. 19. P. 179–187.
- Padhi A.K., Nanjundaswamy K.S., Goodenough J.B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries // J. Electrochem. Soc. 1987. V. 144. No 4. P. 1188–1194.
- Zhang Y., Huo Q., Du P., Wang L., Zhang A., Song Y., Lv Y., Li G. Advances in new cathode material LiFePO4 for lithium-ion batteries // Synthetic Metals // 2012. V. 162. P. 1315–1326.
- Zhou S., Kin G., Scanlon D.O., Sougrati M.T., Melota B.C. Low temperature preparation and electrochemical properties of LiFeSi2O6. // J. Electrochem. Soc. 2014. V. 161 (10). P. A1642–A1647.
- Ishida N., Sakatsume K., Kitamura N., Idemoto Y. Improvement of electrochemical property of pyroxene-type LiFeSi2O6 and crystal-structure analysis // J. Ceram. Soc. Japan. 2017. V. 125 (4). P. 281–286.
- Ishida N., Tajima T., Kitamura N., Idemoto Y. Single-phase synthesis, average, electronic, and local structure and cathode properties of pyroxene type LiFeSi2O6 // Ionics. 2021. V. 27. N. 3. P. 925–933.
- Turianicova E., Witte R., Da Silva K.L., Zorkovska A., Senna M., Hahn H., Heitjans P., Sepelak V. Combined mechanochemical/thermal synthesis of microcrystalline pyroxene LiFeSi2O6 and one-step mechanosynthesis of nanoglassy LiFeSi2O6 based composite // J. Alloys Compd. 2017.V. 707 P. 310–314.
- Рябцева К.М., Хибины. М. “Знание”, 1975 г., 64 с.
- Морозова Л.Н. Колмозерское литиевое месторождение редкометалльных пегматитов. Новые данные по редкоземельному составу (Кольский полуостров), ЛИТОСФЕРА, 2018. Т. 18, № 1. С. 82–98.
- Morimoto M. Nomenclature of pyroxenes // Canadian Mineralogist. 1989. V. 27. P. 143–156.
- Iezzi G., Bromiley G.D., Cavallo A., Das Partha P., Karavassili F., Margiolaki I., Stewart A.A., Tribaudino M., Wright J.P. Solid solution along the synthetic LiAlSi2O6-LiFeSi2O6 (spodumene-ferri-spodumene) join: A general picture of solid solutions, bond lengths, lattice strains, steric effects, symmetries, and chemical compositions of Li clinopyroxenes // American Mineralogist. 2016. V. 101. P. 2498–2513.
- Li C.T., Peacor D.R. The crystal structure of LiAISi206-II ("β~spodumene") // Zeitschrift fur Kristallographie, 1968, Bd. 126. P. 46–65.
- Li C.T. The crystal structure of LiAISi2O6 III (high-quartz solid solution) // Zeitschrift fur Kristallographie, 1968. Bd. 127. P. 327–348.
- An introduction to the rock-forming minerals. Deer W.A., Howie R.A., Zussman J. – 3rd ed., Printed by Berforts Information Press, Stevenage, Hertfordshire, UK, 2013, 549 p.
- Welsch A.M., Behrens H., Horn I., Roß S., Heitjans P. Self-diffusion of lithium in LiAlSi2O6 glasses studied using mass spectrometry // J. Phys. Chem. A 2012. V. 116. P. 309–318.
- Welsch A.-M., Behrens H., Ross S., Murawski D. Structural control of ionic conductivity in LiAlSi2O6 and LiAlSi4O10 glasses and single crystals // Z. Phys. Chem. 2012. V. 226. P. 491–511.
- Welsch A-M., Murawski D., Prekajski M., Vulic P., Kremenovic A. Ionic conductivity in single-crystal LiAlSi2O6: influence of structure on lithium mobility // Phys. Chem. Minerals. Published Online 20 January 2015.
- Русан В.В., Агафонов Д.В., Полякова Л.С., Дымшиц О.С. Синтез материала электрода для ЛИА на основе Li-эгирина (LiFe3+Si2O6) методом “glass melt –ceramic” / Физико-химические проблемы возобновляемой энергетики: сборник трудов российской конференции, 22–24 ноября 2021 г., Санкт-Петербург. СПб.: ПОЛИТЕХ-ПРЕСС, 2021. C. 68–69.
- Русан В.В., Алексеева И.П., Дымшиц О.С., Агафонов Д.В., Полякова Л.С., Сенцова Е.В. Фазовые превращения и электрохимические свойства термообработанных стекол состава Li-эгирина // Физика и химия стекла. 2022. Т. 48, № 6. С. 691–707.
- Skurikhina O., Sennac M., Fabiána M., Witted R., Tarasenkoe R., Tkáče V., Orendáče M., Kaňuchováf M., Girmane V., Harničárovág M., Valíčekg J., Šepelákd V., Tóthováa E. A sustainable reaction process for phase pure LiFeSi2O6 with goethite as an iron source // Ceram. Int. 2020. V. 46. P. 14894–14901.
- Basyrova L., Bukina V., Balabanov S., Belyaev A., Drobotenko V., Dymshits O., Alekseeva I., Tsenter M., Zapalova S., Khubetsov A., Zhilin A., Volokitina A., Vitkin V., Mateos X., Serres J.M., Camy P., Loiko P. Synthesis, structure and spectroscopy of Fe2+: MgAl2O4 transparent ceramics and glass-ceramics, J. Lumin. 2021. V. 236. P. 118090 (1–17).
- Nolet D.A., Burns R.G., Flamm S.L., Besancon J.R. Spectra of Fe-Ti silicate glasses: implications to remote-sensing of planetary surfaces, in: Lunar and Planetary Science Conference Proceedings. 1979. V. 10. P. 1775–1786.
- Marfunin A.S. Physics of Minerals and Inorganic Materials: an Introduction, Springer-Verlag, Berlin, Heidelberg, New York, 1979, p. 340.
- Wang A., Kadam S., Li H. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput Mater. 2018. V. 4. P. 15.
- He Y., Jiang L., Chen T., Xu Y., Jia H., Yi R., Xue D., Song M., Genc A., Bouchet-Marquis C., Pullan L., Tessner T., Yoo J., Li X., Zhang J.G., Zhang S., Wang C. Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nature Nanotechnology. 2021. V. 16 (10). P. 1113–1120.
Supplementary files



