Кластерная самоорганизация интерметаллических систем: кластеры-прекурсоры K3, K5, и K6 для самосборки кристаллических структур Ba 11 Cd 6 Sb 12 -mS58 и Ba 11 Cd 8 Bi 14 -mS66
- Авторлар: Ilyushin G.D.1
-
Мекемелер:
- Kurchatov Complex of Crystallography and Photonics
- Шығарылым: Том 51, № 4 (2025)
- Беттер: 384-399
- Бөлім: Articles
- URL: https://journals.eco-vector.com/0132-6651/article/view/696662
- DOI: https://doi.org/10.7868/S3034613425040025
- ID: 696662
Дәйексөз келтіру
Аннотация
С помощью компьютерных методов (пакет программ ToposPro) осуществлен комбинаторно-топологический анализ и моделирование самосборки кристаллических структур Ba11Cd6Sb12-mS58 (a = 34.082 Å, b = 4.891 Å, c = 13.172 Å, β = 109.63°, V = 2068.20 Å3, C1 2/m 1) и Ba11Cd8Bi14-mS66 (a = 28.193 Å, b = 4.893 Å, c = 16.823 Å, β = 90.84°, V = 2320.55 Å3. C1 2/m 1). Для Ba11Cd8Bi14-mS66 установлены 116 вариантов выделения кластерных структур с числом кластеров N = 3 (2 варианта), 4 (36 вариантов), 5 (78 вариантов). Рассмотрен вариант самосборки кристаллической структуры с участием кластеров K3(8j) = 0@3 (BaCdBi) в виде кольца из 3 атомов, кластеров K5(2a) = 0@5(BaCd2Bi2) в виде двух колец из 3 атомов с общим атомом Ba, кластеров K6(2c, 2/m) = 0@6(Ba4Bi2) в виде сдвоенных тетраэдров, кластеров K6(2c, 2/m) = 0@6(Ba2Cd2Bi2) в виде сдвоенных тетраэдров, атомов Bi, образующих цепь и атомы-спейсеры Bi. Для Ba11Cd6Sb12-mS58 установлены 107 вариантов выделения кластерных структур с числом кластеров N = 3 (13 вариантов), 4 (39 вариантов), 5 (39 вариантов), 6 (16 вариантов). Рассмотрен вариант самосборки кристаллической структуры с участием кластеров K5(2a, 2/m) = 0@5(BaCd2Sb2) в виде двух колец из трех атомов с общим атомом Ba, кластеров K6(4e, –1) = 0@(Ba4Sb2) в виде сдвоенных тетраэдров, кластеров K6(4f, –1) = 0@(Ba2Cd2Sb2) в виде сдвоенных тетраэдров, 6 атомных кластеров K6(2c, 2/m) = 0@4(Ba4Sb2) в виде сдвоенных тетраэдров, атомов Cd и Sb, образующих цепь, и атомы-спейсеры Sb(4). Реконструирован симметрийный и топологический код процессов самосборки 3D-структур из кластеров-прекурсоров в виде: первичная цепь → слой → каркас.
Авторлар туралы
G. Ilyushin
Kurchatov Complex of Crystallography and Photonics
Email: gdilyushin@gmail.com
119333, Russia, Moscow, Leninsky Avenue, 59
Әдебиет тізімі
- Pearson’s Crystal Data-Crystal Structure Database for Inorganic Compounds (PCDIC) ASM International: Materials Park, OH.
- Blatov V.A., Shevchenko A.P., Proserpio D.M. Applied topological analysis of crystal structures with the program package ToposPro Cryst. // Growth Des. 2014. V. 14. P. 3576–3586. https://topospro.com/
- Xia S.-Q., Bobev S. Ba11Cd8Bi14: Bismuth Zigzag Chains in a Ternary Alkaline-Earth Transition-Metal Zintl Phase. // Inorg. Chem. 2006. V. 45. P. 7126–7132.
- Xia Sheng Qing, Bobev S. Are Ba11Cd6Sb12 and Sr11Cd6Sb12 Zintl phases or not? A density-functional theory study. // Journal of Computational Chemistry. 2008. V. 29. P. 2125–2133.
- Saparov B., Bobev S. Undecaeuropium hexazinc dodecaarsenide. Acta Cryst. 2010. E66. P. i24.
- Saparov B., Bobev S., Ozbay A., Nowak E. Synthesis, structure and physical properties of the new Zintl phases Eu11Zn6Sb12 and Eu11Cd6 Sb12. // Journal of Solid State Chemistry. 2008. V. 181. P. 2690–2696.
- Manyako M.B., Yanson T.I., Boda, O.I., Cerny R., Yvon K. Crystal structure of ytterbium nickel aluminium, Yb4Ni6Al23. // Zeitschrift für Kristallographie – Crystalline Materials. 1996. V. 211. P. 219.
- Gladyshevskii R.E., Parthe E. Structure of monoclinic Y4Ni6Al23. //Acta Cryst. 1992. C48. P. 232–236.
- Delsante S., Borzone G. The Gd-Ni-Al system: Phase formation and isothermal sections at 500 °C and 800 °C. // Intermetallics. 2014. V. 45 (1–2). P. 71–79.
- Delsante S., Parodi N., Novakovic R. Borzone G. Phase Relations of the Sm–Ni–Al Ternary System at 800 °C in the 30–100 at. % Al Region. //J. Phase Equilib. Diffus. 2024. V. 45. P. 639–652.
- Gout D., Benbow E., Gourdon O., Miller G.J. Crystallographic, electronic and magnetic studies of Ce4Ni6Al23: a new ternary intermetallic compound in the cerium–nickel–aluminum phase diagram. // Journal of Solid State Chemistry. 2003. V. 174 (2). P. 471–481.
- Shevchenko V. Ya., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: Cluster-Precursors K13, K11, K4, and K3 for the Self-Assembly of Crystal Structures Ce56Ni24Si44-mS124 and Ba10La2Si12-aP48. // Glass Physics and Chemistry. 2024. V. 50. No 1. P. 1–9.
- Shevchenko V. Ya., Ilyushin GD. Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K3, K4, and K6 for the Self-Assembly of RbNa8Ga3As6-oP72, Sr2Ca4In3Ge6-oP56, and Sr8Li4In4Ge8-oP24 Crystal Structures. // Glass Physics and Chemistry. 2024. V. 50. No 2. P. 87–100.
- Shevchenko V. Ya., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Li28Cu4Si8-oP40, La12Rh12Al16-oP40, and Ca8Pt12Sn20-oP40 // Glass Physics and Chemistry. 2025. V. 51. No 1. P. 1–14.
- Shevchenko V. Ya., Ilyushin G.D. Cluster Self-Organization of Intermetallic Systems: K3, K4, and K6 Clusters-Precursors for the Self-Assembly of Y8Rh12Sn20-oS40, Lu16Zn20Ge24-oS60, and Ba8Ir16In52-oS76 Crystal Structures. // Glass Physics and Chemistry. 2025. V. 51. No 1. P. 15–23.
Қосымша файлдар


