La2BaLu2O7: Новый смешанный кислородно-ионный проводник

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Активно ведется разработка новых керамических материалов, которые обладают ионной проводимостью и могут быть использованы в качестве компонентов в различных электрохимических устройствах. Это исследование сосредоточено на изучении электропроводности полученного недавно слоистого перовскитоподобного оксида La2BaLu2O7, обладающего двухслойной структурой Руддлесдена-Поппера. Соединения с данной структурой проявляют ионную проводимость, уровень которой зависит от замещений в кристаллической решетке. Было установлено, что электропроводность в La2BaLu2O7 имеет смешанный кислородно-ионный характер, при этом ионная проводимость составляет в среднем 66.5% от общей проводимости.

作者简介

D. Ershov

Institute of Silicate Chemistry named after I.V. Grebenshchikov (Branch of NRC 'Kurchatov Institute' - PIKH)

Email: ershov.d.s@yandex.ru
199034, Russia, Saint Petersburg, nab. Makrova, 2

V. Popova

Institute of Silicate Chemistry named after I.V. Grebenshchikov (Branch of NRC 'Kurchatov Institute' - PIKH)

199034, Russia, Saint Petersburg, nab. Makrova, 2

O. Sinelshchikova

Institute of Silicate Chemistry named after I.V. Grebenshchikov (Branch of NRC 'Kurchatov Institute' - PIKH)

199034, Russia, Saint Petersburg, nab. Makrova, 2

E. Tugova

Ioffe Institute

Email: katugova@mail.ioffe.ru
194021, Russia, Saint Petersburg, Polytechnicheskaya St., 26

参考

  1. Ruddlesden S.N., Popper P. The compounds Sr3Ti2O7 and its structure //Acta Crystallogr. 1958. V. 11. No 1. P. 54–55.
  2. Beznosikov B.V., Aleksandrov K.S. Perovskite-like crystals of the Ruddlesden–Popper series // Crystallography Reports. 2000. V. 45. No 5. P. 792–798.
  3. Zvereva I., Smirnov Yu., Gusarov V., Popova V., Choisnet J. Complex aluminates RE2SrAl2O7 (RE = La, Nd, Sm-Ho): Cation ordering and stability of double perovskite slab-rocksalt layer P2/RS intergrowth // J. Solid State Sci. 2003. V. 5. P. 343–349.
  4. Popova V.F., Tugova E.A. Thermal stability of complex aluminates in the La2SrAl2O7-Ho2SrAl2O7 system // Russ. J. Inorg. Chem. 2023. V. 68. No 10. P. 1482–1486.
  5. Lei Y., Lei L., Xiao Q.L., Xiang M.C. Structure Evolution and Enhanced Microwave Dielectric Characteristics of (Sr1 xCax)La2Al2O7 Ceramics // J. Am. Ceram. Soc. 2014. V. 97. No 11. P. 3531–3536.
  6. Yuan J., Dong Sh., Jiang J., Deng L., Cao X. High-temperature corrosion behaviour of plasma sprayed Gd2SrAl2O7 coatings by V2O5 at 700–1200 °C // Corrosion Science. 2022. V. 197. P. 110032.
  7. Chahar S., Devi R., Dalal M., Bala M., Dalal J., Boora P., Taxak V.B., Lather R., Khatkar S.P. Color tunable nanocrystalline SrGd2Al2O7: Tb3+ phosphor for solid state lighting // Ceramics International. 2019. V. 45. No 1. P. 606–613.
  8. Tugova E.A. Mechanisms of the Solid-State Synthesis of Ln2SrFe2O7 (Ln = La, Nd, Gd, Dy) Layered Perovskite-Related Phases // Russ. J. Gen. Chem. 2019. V. 89. P. 2295–2300.
  9. Tugova E.A., Bobrysheva N.P., Selyutin A.A., Gusarov V.V. Magnetic properties of complex oxides Gd2SrM2O7 (M = Fe, Al) // Russ. J. Gen. Chem. 2008. V. 78. P. 2000–2001.
  10. Tugova E.A. Mechanisms of the Solid-State Synthesis of Ln2SrFe2O7 (Ln = La, Nd, Gd, Dy) Layered Perovskite-Related Phases // Russ. J. Gen. Chem. 2019. V. 89. P 2295–2300.
  11. Sheshko T.F., Kryuchkova T.A., Serov Yu.M., Chislova I.V., Zvereva I.A. New mixed perovskite-type Gd2–xSr1+xFe2O7 catalysts for dry reforming of methane and production of light olefins // Catal. Ind. 2017. V. 9. P. 162–169.
  12. Gurusinghe N.N.M., Fones J.C., Marco J.F., Berry F.J., Greaves C. Fluorine insertion into the Ruddlesden–Popper phase La2BaFe2O7: the structure and magnetic properties of La2BaFe2O5F4 // Dalton Trans. 2014. V. 43. P. 2038–2043.
  13. Kamegashira N., Satoh H., Meng J., Mikami T. Structural determination of a new phase of monoclinic BaTb2Mn2O7 // J. Alloys Compd. 2004. V. 374. No 1–2. P. 173–176.
  14. Hadermann J., Abakumov A.M., Tsirlin A.A., Rozova M.G., Sarakinou E., Antipov E.V. Expanding the Ruddlesden–Popper manganite family: the n = 3La3.2Ba0.8Mn3O10 member // Inorg. Chem. 2012. V. 51. No 21. P. 11487–11492.
  15. Nakano H., Ishizawa N., Kamegashira N., Yashima M. In situ transmission electron microscopy observation of multiple phase transition in BaGd2Mn2O7 // J. Am. Ceram. Soc. 2007. V. 90. No 4. P. 1342–1345.
  16. Tarasova N., Bedarkova A., Animitsa I., Korona D., Abakumova E., Medvedev D. Novel mixed oxygen-electronic conductors based on BaLa2In2O7 with two-layer Ruddlesden-Popper structure // Ceramics International. 2022. V. 48. P. 35376–35385.
  17. Caldes M., Michel C., Rouillon Th., Maryvonne H., Raveau B. Novel indates Ln2BaIn2O7,n = 2 members of the Ruddlesden–Popper family (Ln = La, Nd) // J. Mater. Chem. 2002. V. 12. P. 473–476.
  18. Tarasova N., Bedarkova A., Animitsa I., Abakumova E., Gnatyuk V., Zvonareva I. Novel protonic conductor SrLa2Sc2O7 with layered structure for electrochemical devices // Materials. 2022. V. 15. P. 8867.
  19. Ovanesyan K.L., Petrosyan A.G., Shirinyan G.O., Pedrini C., Zhang L. Czochralski single crystal growth of Ce- and Pr-doped LaLuO3 double oxide // J. Crystal Growth. 1999. V. 198–199. P. 497–500.
  20. Ito K., Tezuka K., Hinatsu Y. Preparation, magnetic susceptibility, and specific heat on interlanthanide perovskites ABO3 (A=La–Nd, B=Dy–Lu) // J. Solid State Chem. 2001. V. 157. P. 173–179.
  21. Tugova E.A., Popova V.F., Romanov D.P., Tomkovich M.V., Petrosyan A.G. Synthesis of new n = 2 Ruddlesden-Popper compound La2BaLu2O7 // J. Aust. Ceram. Soc. 2025. V. 61. P. 1237–1244.
  22. Lesnichyova A., Belyakov S., Stroeva A., Petrova S., Kaichev V., Kuzmin A. Densification and Proton Conductivity of La1-xBaxScO3-δ Electrolyte Membranes // Membranes. 2022. V. 12. No 11. P. 1084.
  23. Filonova E., Medvedev D. Recent Progress in the Design, Characterisation and Application of LaAlO3- and LaGaO3-Based Solid Oxide Fuel Cell Electrolytes // Nanomaterials. 2022. V. 12. No 12. P. 1991.
  24. Kasyanova A.V., Lyagaeva J.G., Vdovin G.K., Murashkina A.A., Medvedev D.A. Transport properties of LaYbO3-based electrolytes doped with alkaline earth elements // Electrochimica Acta. 2023. V. 439. P. 141702.
  25. Fabián M., Arias-Serrano B.I., Yaremchenko A.A., Kolev H., Kaňuchová M., Briančin J. Ionic and electronic transport in calcium-substituted LaAlO3 perovskites prepared via mechanochemical route // J. Eur. Ceram. Soc. 2019. V. 39. I. 16. P. 5298–5308.
  26. Nuansaeng S., Yashima M., Matsuka M., Ishihara T. Mixed Conductivity, Nonstoichiometric Oxygen, and Oxygen Permeation Properties in Co-Doped Sr3Ti2O7–δ // Chem. Eur. J. 2011. V. 17. I. 40. P. 11324–11331.
  27. Irvine T.S., Sinclair D.C., West A.R. Electroceramics: characterization by impedance spectroscopy // Adv. Mater. 1990. V. 2. P. 132–138.
  28. Takahashi S., Nishimoto S., Matsuda M., Miyake M. Electrode Properties of the Ruddlesden–Popper Series, Lan+1NinO3n+1 (n = 1, 2, and 3), as Intermediate-Temperature Solid Oxide Fuel Cells // J. Am. Ceram. Soc. 2010. V. 93. I. 8. P. 2329–2333.
  29. Тугова Е.А., Травицков А.В., Проскурина О.В., Томкович М.В., Карпов О.Н. Физико-химические основы определения плотности и пористости: учебное пособие. СПб.: ЛЕМА, 2018. 69 с. ISBN: 978–5–00105–358–3
  30. Оделевский В.И. Расчет обобщенной электропроводности гетерогенных смесей // Журнал технической физики, 1951. Т. 21. С. 1379–1381.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025