Evolution of gas hydrates accumulation in zones of submarine mud volcanoes

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The article examines the processes of evolution of gas hydrate accumulations, related to submarine mud volcanoes. A mathematical model and the results of numerical modeling of the accumulation of gas hydrates in the seabed in the deep structures of underwater mud volcanoes are presented.

Numerical analysis of the influence held feeder layer depth and pressure therein to the evolution of gas hydrate saturation confined to deep water mud volcanoes were performed. Modeling quantitatively showed that hydrate saturation in areas of underwater mud volcanoes is not constant and its evolution depends on the geophysical properties of the bottom medium (temperature gradient, porosity, permeability, physical properties of sediments) and the depth of the supply reservoir and pressure in it, and the rate of hydrate accumulation in tens and hundreds times the rate of hydrate accumulation in the sedimentary basins of passive continental margin.

全文:

受限制的访问

作者简介

A. Sobisevich

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: shageraxcom@yandex.ru
俄罗斯联邦, Bol’shaya Gruzinskaya str. 10, building 1, Moscow, 123242 Russia

E. Suetnova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: shageraxcom@yandex.ru
俄罗斯联邦, Bol’shaya Gruzinskaya str. 10, building 1, Moscow, 123242 Russia

R. Zhostkov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: shageraxcom@yandex.ru
俄罗斯联邦, Bol’shaya Gruzinskaya str. 10, building 1, Moscow, 123242 Russia

参考

  1. Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. М.: Недра, 1993. 416 с.
  2. Жостков Р.А., Собисевич А.Л., Суетнова Е.И. Математическая модель аккумуляции газовых гидратов, приуроченных к глубоководным грязевым вулканам // ДАН. 2017. Т. 474. № 1. С. 361–365.
  3. Каевицер В.И., Словцов И.Б., Кривцов А.П. и др. Подводные грязевые вулканы Таманского полуострова (по данным гидролокационных исследований) // Вулканология и сейсмология. 2016. № 4. С. 27–33. doi: 10.7868/S0203030616040039.
  4. Николаевский В.Н., Басниев К.С., Горбунов А.Т., Зотов Г.А. Механика насыщенных пористых сред. М.: Недра, 1970. 338 с.
  5. Суетнова Е.И. Аккумуляция газовых гидратов в морском дне при последовательном накоплении осадков с различными транспортными свойствами // ДАН. 2011. Т. 438. № 6. С. 813–816.
  6. Суетнова Е.И. Аккумуляция газовых гидратов в окрестности подводных грязевых вулканов // Геофизические исследования. 2016. Т. 17. № 4. С.39–48.
  7. Холодов В.Н. Грязевые вулканы: закономерности размещения и генезис // Литология и полез. ископаемые. 2012. № 3. С. 227–241.
  8. Чарный В.А. Подземная гидрогазодинамика. М.: Гостехиздат, 1963. 396 с.
  9. Davie M.K., Buffett B.A. A numerical model for the formation of gas hydrate below the seafloor // J. Geophys. Res. 2001. V. 106. № B1. P. 497–514.
  10. Davie M.K., Zatsepina O.Ye., Buffet B.A. Methane solubility in marine hydrate environments // Marine Geology. 2004. V. 203. P. 177–184.
  11. Feseker T. Boetius A., Wenzhofer F. et al. Eruption of a deep-sea mud volcano triggers rapid sediment movement // Nat. Commun. 2014. doi: 10.1038/ncomms6385.
  12. Ginsburg G.D., Milkov A.V., Soloviev V.A. et al. Gas hydrate accumulation at the Haаkon Mosby Mud Volcano // Geo-Marine Lett. 1999. V. 19. P. 57–67.
  13. Ginsburg G.D., Soloviev V.A. Methane migration within the submarine gashydrate stability zone under deep-water conditions // Marine Geology. 1997. V. 137. P. 49–57.
  14. Mazzini A. Mud volcanism: Processes and implications // Marine and Petroleum Geology. 2009. V. 26. P. 1677–1680.
  15. Mazzini A., Etiope G. Mud volcanism: An updated review // Earth-Science Rev. 2017. V. 168. P. 81–112.
  16. Milkov A.V., Sassen R., Apanasovich T.V., Dadashev F.G. Global gas flux from mud volcanoes: a significant source of fossil methane in the atmosphere and the ocean // Geophys. Res. Lett. 2003. V. 30.
  17. P. 1037–1041.
  18. Perez-Garcia C., Feseker T., Mienert J., Berndt C. The Hakon Mosby mud volcano: 330 000 years of focused fluid flow activity at the SW Barents Sea slope // Marine Geology. 2009. V. 262. P. 105–115.
  19. Rempel A.W., Buffett D.A. Formation and accumulation of gas hydrate in porous media // J. Geophys. Res. 1997. V. 102. № B5. P. 10151–10164.
  20. Sloan E.D., Koh C.A. Clathrate Hydrates of Natural Gases // CRC Press. 2007. 752 p.
  21. Suetnova E.I.. Numerical simulation of accumulation of gas hydrates during sedimentation and compaction of sediments under subaqueous conditions // Izvestiya. Physics of solid Earth. 2007. V. 43. № 9. P. 791–797.
  22. Tinivella U., Giustiniani M. An Overview of Mud Volcanoes Associated to Gas Hydrate System // Updates in Volcanology – New Advances in Understanding Volcanic Systems / Еd. Karoly Nemeth. 2012. P. 22–267. ISBN 978-953-51-0915-0.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2019