Earthquake july 17, 2017, Mw = 7.8 near the Komandorsky islands and strong seismic manifestations in the western segment of Aleut island arc

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The tectonic position, seismological characteristics and features of the aftershock process of the source of the strongest Near-Aleutian earthquake on July 17, 2017 on the Commander Islands with Мw = 7.8 are considered. The analysis showed that the seismic source according to the distribution of aftershock epicenters in the form of a linearly elongated narrow zone with a length of about 400 km almost completely occupied the northern slope of the Commander island elevation and was located in the Bering fault zone. It covered the whole of this seismic-generating zone up to the transverse structure to the west of the Near Islands (Attu is.). In accordance with the focal mechanisms solution and the nature of the displacements in the foci of the main shock, the strongest foreshocks and aftershocks, the shift in the source was an almost pure right-sided shift. The aftershock process of the July 17 earthquake developed quite enough inertly for an earthquake of such strength. In addition, it has two features in comparison with the aftershock processes of most of the Kuril-Kamchatka earthquakes: 1) low release of the cumulative scalar seismic moment (M0cum aft), which according to various estimates was from 0.75% to 1.0% of the seismic moment of the main shock (M0me); 2) a very slow increase in the deficit in the release of the seismic moment (M0). At the same time, the duration of the quasi-stationary phase of M0cum release in aftershocks, estimated at about ½ year and covering a significant part of the duration of the entire aftershock process of this earthquake, seems unusually long. These features of the aftershock process of the Middle Aleutian earthquake on July 17, 2017 distinguish it from the aftershock processes characteristic of most strong Kuril-Kamchatka earthquakes. In general, its source can be considered as a transform between the two Benioff zones – Aleutian and Kuril-Kamchatka, and not subduction, that is characterise the last two.

Full Text

Restricted Access

About the authors

A. I. Lutikov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Unified Geophysical Survey of the Russian Academy of Sciences

Author for correspondence.
Email: ail@ifz.ru
Russian Federation, Bol’shaya Gruzinskaya str. 10, building 1, Moscow, 123242 Russia; Lenin Ave. 189, Obninsk, Kaluga Region, 249035 Russia

E. A. Rogozhin

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; Unified Geophysical Survey of the Russian Academy of Sciences

Email: ail@ifz.ru
Russian Federation, Bol’shaya Gruzinskaya str. 10, building 1, Moscow, 123242 Russia; Lenin Ave. 189, Obninsk, Kaluga Region, 249035 Russia

G. Yu. Donzova

Unified Geophysical Survey of the Russian Academy of Sciences

Email: donzova@ifz.ru
Russian Federation, Lenin Ave. 189, Obninsk, Kaluga Region, 249035 Russia

V. N. Zhukovez

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: ail@ifz.ru
Russian Federation, Bol’shaya Gruzinskaya str. 10, building 1, Moscow, 123242 Russia

References

  1. Балакина Л.М., Москвина А.Г. Особенности сейсмогенного процесса в Алеутской островной дуге. III. Землетрясения в западной и восточной окраинах дуги // Физика Земли. 2010. № 4. С. 9–34.
  2. Зобин В.М., Гусева Е.М., Иванова Е.И. и др. Командорское землетрясение 29 февраля 1988 г. // Землетрясения в СССР в 1988 году. М.: Наука, 1991. С. 16–177.
  3. Каталог службы срочных донесений (ССД) ЕГС РАН, http://www.ceme.gsras.ru/ceme/ssd_news.htm
  4. Каталоги NEIC, http://earthquake.usgs.gov/earthquakes/search
  5. Левин В.Е., Гордеев Е.И., Бахтиаров В.Ф., Касахара М. Предварительные результаты GPS мониторинга на Камчатке и Командорских островах // Вулканология и сейсмология. 2002. № 1. C. 3–11.
  6. Левина В.И., Иванова Е.И., Гордеев Е.И. и др. Камчатка и Командорские острова // Землетрясения Северной Евразии в 1996 году. М., 2002. С. 119–128.
  7. Левина В.И., Иванова Е.И., Ландер А.В. и др. Камчатка и Командорские острова // Землетрясения Северной Евразии 2003. Обнинск, 2009а.
  8. С. 181–192.
  9. Левина В.И., Чеброва А.Ю., Ландер А.В. и др. Командорское-II землетрясение 5 декабря 2003 года с MS = 6.8, I0p = 7 (Командорские острова) // Землетрясения Северной Евразии 2003. Обнинск, 2009б. С. 374–381.
  10. Лутиков А.И., Донцова Г.Ю. Оценка линейных размеров очагов землетрясений Камчатки по размерам облака афтершоков // Известия РАН. Физика Земли. 2002. № 6. С. 46–56.
  11. Лутиков А.И., Юнга С.Л., Кучай М.С. Сейсмические источники, не удовлетворяющие модели двойного диполя: критерий выявления и распределение в островных дугах // Геофизические исследования. 2010. Т. 11. № 3. С. 11–25.
  12. Лутиков А.И., Родина С.Н. Временные и энергетические параметры афтершокового процесса Курило-Камчатских землетрясений // Геофизические исследования. 2013. Т. 14. № 4. С. 5–17.
  13. Новый каталог сильных землетрясений на территории СССР с древнейших времен до 1975 г. М.: Наука, 1977. 535 с.
  14. Региональный каталог землетрясений Камчатки (РКЗК) КФ ЕГС РАН, http://www.emsd.ru/
  15. Уломов В.И., Медведева Н.С. Специализированный каталог землетрясений Северной Евразии (УКЗСЕ), seismos-u.ifz.ru/documents/Eartquake-Catalog-СКЗ.pdf
  16. Федотов С.А., Зобин В.М., Гордеев Е.И. и др. Землетрясения Камчатки и Командорских островов // Землетрясения в СССР в 1990 году. М., 1996. С. 100–106.
  17. Чебров Д.В., Кугаенко Ю.А., Ландер А.В. и др. Южно-Озерновское землетрясение 29.03.2017 г. с Mw = 6.6, Ks = 15.0, I = 6 (Камчатка) // Вестник КРАУНЦ. Науки о Земле. 2017а. № 3. Выпуск 35. С. 8–21.
  18. Чебров Д.В., Кугаенко Ю.А., Абубакиров И.Р. и др. Ближне-Алеутское землетрясение 17.07.2017 г. с Mw = 7.8 на границе Командорской сейсмической бреши // Вестник КРАУНЦ. Науки о Земле. 2017б. № 3. Выпуск 35. С. 22–25.
  19. Bath M. Lateral inhomogeneities of the upper mantle // Tectonophysics. 1965. № 2(6). P. 483–514.
  20. Dziewonski A.M., Chou T.A., Woodhouse J.H. Determination of earthquake source parameters from wave-form data for studies of global and regional seismicity // J. Geophys. Res. 1981. V. 86. P. 2825–2852.
  21. Frohlich C. Characteristics of Well-Determined Non-Double-Couple Earthquakes in the Harvard CMT Catalog // Phys. Earth Planet. Inter. 1995. V. 91. Iss. 4. P. 213–228.
  22. Global Centroid-Moment-Tensor (CMT) catalog Project, http://www.globalcmt.org/CMTsearch.html
  23. Kagan Y.Y. Accuracy of modern global earthquake catalogs // Physics of the Earth and Planet. Interiors. 2003. V. 135. P. 173–209.
  24. Kanamori H. Quantification of Earthquakes // Nature. 1978. V. 271. № 5644. P. 411–414.
  25. Kisslenger C., Jones L.M. Properties of aftershock sequences in southern California // J. Geophys. Res. 1991. V. 96. P. 11947–11958.
  26. Mets C., Gordon R.G., Argus D.F., Stein S. Current plate motions // Geophys. J. Int. 1990. V. 101. P. 425–478.
  27. Newberry J.T., Laclair D.L., Fujita K. Seismicity and tectonics of the far Western Aleutian Islands // Journal of Geodynamics. 1986. V. 6. Iss. 1–4. P. 13–32.
  28. Plate Motion Calculator. http://sps.unavco.org/crustal_motion/dxdt/model/
  29. Ruppert N.A. , Kozyreva N.P., Hansen R.А. Review of crustal seismicity in the Aleutian Arc and implications for arc deformation // Tectonophysics. 2012. V. 522–523. P. 150–157.
  30. Sherbakov R., Turcotte D.L. A modified form of bath’s law // Bull. Seism. Soc. Am. 2004. V. 94. P. 1968–1975.
  31. Wells D.L., Coppersmith K.J. New empirical relationships among magnitude, rupture length rupture width, rupture area, and surface displacement // Bull. Seismol. Soc. Amer. 1994. V. 84. № 4. P. 974–1002.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Seismotectonic map of the epicentral region of the Middle Aleutian earthquake of 2017 1 - Commander block; 2 - the motion vector of the Pacific plate relative to Kamchatka [Plate Motion Calculator, http://sps.unavco.org/crustal_motion/dxdt/model/]; 3 - movement vector of the Commander block relative to Kamchatka according to GPS data [Levin et al., 2002]; 4 - the focal mechanism of the main event 07/17/2017; 5 - the focal mechanism of the aftershock on 01/25/2018 (Mw = 6.2); 6 - the foreshock focal mechanism July 17, 2017 (Mw = 6.2); 7 - the focal mechanism of the foreshock on 06/02/2017 near the Near Islands (Mw = 6.8). All focal mechanisms are given according to [Global CMT catalog].

Download (174KB)
3. Fig. 2. Map of the foci of earthquakes of the Commander and western segment of the Aleutian Arc (5.3 ≤ Mw <6.0) (a) and (Mw ≥ 6.0) (b). The projections on the lower hemisphere are given. White field - stretching sector, dark - compression. The black dot on the stereograms of the focal mechanisms is the stretching axis T.

Download (119KB)
4. Fig. 3. The epicenters of 95 earthquakes, including the epicenters of the main shock on July 17, 2017, foreshocks and aftershocks recorded in the Commander Islands region from May 24, 2017 to March 27, 2018

Download (172KB)
5. Fig. 4. Scheme of foreshocks and aftershocks of the earthquake of July 17, 2017, Mw = 7.8 (indicated by a large square), for the period from July 17 to 20 inclusive, according to the data of the SJS GS RAS. The largest circles are marked foreshocks 02.06.2017, Mw = 6.8 and 07/17/2017 at 11:06, Mw = 6.2.

Download (172KB)
6. Fig. 5. The time course of the release of M0cum in the aftershock region of the earthquake on July 17 from 1920 to 2017. The straight line shows linear regression, approximating the observed data for the period from 1924 to 1998. inclusive. The horizontal bars indicate the 95% confidence interval of the regression in 2017. Triangles show the magnitudes (right axis of ordinates) of the strongest (Mw ≥ 5.8) seismic events.

Download (134KB)
7. Fig. 6. Map of aftershocks (2.3 ≤ Mw ≤ 6.2) earthquakes of July 17, 2017 (Mw = 7.8) for the entire period, from July 17, 2017 to February 27, 2017, a total of 378 aftershocks. The main event is indicated by a large diamond; aftershocks are shown filled circles, the diameter of which is proportional to the magnitude.

Download (148KB)
8. Fig. 7. The graph of repeatability of aftershocks in the range of magnitudes 2.5 ≤ Mw ≤ 6.0, constructed according to the table. 1. Straight lines indicate orthogonal regressions, carried out in the ranges of magnitudes 2.5–4.0 and 4.0–6.0.

Download (98KB)
9. Fig. 8. The course of the release of the scalar seismic moment (M0cum) in aftershocks as a share of the main event M0 according to the data of the catalog of the SDC EGS RAS (a) and according to the catalog of the RKZK KF EGS RAS (b). Triangles indicate maximum aftershock magnitudes (second axis of ordinates). The straight line shows the regression on the initial part of the graph.

Download (120KB)
10. Fig. 9. The time course of the release of M0cum / M0me in aftershocks of the earthquake of July 17, in fractions of the main event M0 for the period from July 17, 2017, to February 27, 2018, inclusive. The graph is constructed according to the RCLC KF EGS RAS and the catalog of the CMT [Global Centroid-Moment-Tensor (CMT) catalog]. The straight line shows the regression (6). The horizontal bars indicate the 95% confidence interval of the regression on 01/25/2018.

Download (172KB)
11. Fig. 10. Earthquakes of the Commander and Near Aleutian Islands (1988–2010), together with their aftershock sequences.

Download (191KB)

Copyright (c) 2019 Russian Academy of Sciences